Cuttlefish: A Flexible and Lightweight Middleware
for Combining Heterogeneous IoT Devices

Andreas Pamboris

Charalampos Kozis

Herodotos Herodotou

University of Central Lancashire and JARVIC LTD Cyprus University of Technology Cyprus University of Technology

apamboris@uclan.ac.uk, apamboris @jarvic.eu

Abstract—The Internet of Things (IoT) extends connectivity
beyond traditional computing devices to different types of smart
objects, equipped with various sensors and actuators. These
objects range from smart lightbulbs and thermostats to smart
watches and fitness trackers, or even heavy machinery used
in various industrial sectors. Due to device heterogeneity, the
complexity of developing applications that require the collection
and sharing of data across multiple IoT devices is high, as
developers need to be familiar with a diverse set of supported
services and APIs. While existing approaches have proposed
solutions to this challenge, they rely on the use of resource-
intensive cloud-based components, they do not offer the degree
of extensibility desired by developers, and they often trade off
some of the richness of real-time data for ease of use. Cuttlefish
is a flexible and lightweight middleware that offers a unified
API to help with the development of applications that utilize
multiple heterogeneous IoT devices. It abstracts away much of
the complexity involved with orchestrating different devices at
runtime. At the same time, it avoids the aforementioned caveats
of existing approaches through a simple and efficient design, yet
one that offers a rich set of capabilities to developers.

Index Terms—IoT Middleware, IoT Communication Protocol

I. INTRODUCTION

Over time, many have proposed different types of middle-
ware to support the development and operation of distributed
systems of different kinds [1]-[7]. With the rise of the Internet
of Things (IoT), new requirements for this kind of middleware
have emerged. The new status quo involves an abundance of
different types of connected devices, offering a wide range
of capabilities, but also numerous ways of interaction with
them. These devices vary from home and industrial appliances,
environmental monitoring stations, smart wearables, and other
embedded electronic devices. They typically contain different
types of sensors and actuators, which, however, are exposed
to third-party clients through different services and APIs.

IoT applications rely heavily on the exchange of data
between such (often diverse) devices. To date, the number of
connected devices is estimated to roughly 11 billion units, and
is forecasted to grow significantly in the next few years [8].
The rate at which new devices join the IoT landscape suggests
the need for supporting seamlessly the cooperation and co-
ordination of heterogeneous platforms. This entails acquiring

This work was co-funded by the European Regional Development Fund
and the Republic of Cyprus through the Research Promotion Foundation
(STEAM Project: INTEGRATED/0916/0063 and RABIT Project: START-
UPS/0618/0053).

ca.kozis@edu.cut.ac.cy

herodotos.herodotou@cut.ac.cy

sensed data and effecting actions across multiple devices with
ease in real time. Ideally, developers should not have to
familiarize themselves with all different types of services and
APIs exposed by various platforms.

To this end, previous work has proposed different types of
middleware to facilitate the development of IoT applications
across heterogeneous devices [9] (discussed in Section II).
However, to the best of our knowledge, no existing approach
has managed to combine all of the following desired IoT
middleware features: (i) no reliance on cloud resources dur-
ing operation; (ii) support for dynamic service discovery;
(iii) support for device composition and local processing; and
(iv) support for user security and privacy when dealing with
sensitive data.

This paper presents a new middleware for IoT applica-
tions, coined Cuttlefish, which enables developers to easily
orchestrate heterogeneous IoT devices, while addressing all
aforementioned challenges. Cuttlefish comprises three main
interconnected components: the Clients, the Manager, and the
Devices. Clients use a unified API through which applications
can obtain information about connected devices and their
capabilities (sensors and actuators), but also query sensor data
and execute actuator commands in real time. The Manager is
responsible for managing all connected devices and processing
corresponding requests issued by Clients based on a publish-
subscribe model. Finally, Devices are the actual IoT endpoints
that have access to different types of sensors and actuators.

The main contribution of Cuttlefish lies in its ability to
support all main features desired by an IoT middleware (such
as dynamic service discovery, device composition, and local
processing), while remaining lightweight enough for it to be
hosted even on resource-constrained devices (along with the
corresponding IoT applications built on top of it). As a result,
it requires minimum deployment provisioning, which directly
impacts the associated deployment cost and efforts. At the
same time, it provides users with full control over the data
collected and shared through the middleware, by eliminating
the need for relaying data to machines that are not explicitly
managed by the user (e.g., cloud-based servers). Cuttlefish
achieves this by adopting a simple and efficient architecture
design, where all communications and data exchanges happen
through a lightweight publish-subscribe engine.

The remainder of this paper is organized as follows:
Section II discusses existing IoT middleware solutions and

TABLE I
COMPARING SERVICE-, CLOUD-, AND ACTOR-BASED IOT MIDDLEWARE WITH CUTTLEFISH

Feature Service-based Cloud-based Actor-based Cuttlefish
Deployable on Cloud and powerful servers Yes Yes Yes Yes
Deployable on resource-constrained devices No No Yes Yes

Data accessibility mechanism Web Apps/SDK RESTful APIs Event/Actor-based Direct stream-based
Support for service discovery Yes Limited No/Limited Yes
Support for device composition No/Limited No/Limited Limited Yes
Support for local processing/aggregation No No Yes Yes
Security and privacy Access control Access control Limited High

compares them to Cuttlefish; Section III presents the overall
architecture of Cuttlefish; Section IV discusses the Cuttlefish
communication protocol; Section V presents some preliminary
evaluation results; and Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

The increasing popularity of IoT systems has lead to the
rise of a plethora of IoT middleware, that is software systems
designed to act as intermediary between IoT devices and
applications [9], [10]. The main purpose of IoT middleware
is to enable seamless connectivity for a large number of
heterogeneous IoT devices and simplify the application devel-
opment. Many IoT middleware platforms have been developed
in recent years, each proposing a different architecture and
programming abstraction. The current architectures can be
categorized into three main classes, namely service-based,
cloud-based, and actor-based middleware [9].

Service-based IoT middleware such as Hydra [11], XGSN
[12], and SATware [13] are inspired by the service oriented
architecture and abstract the functionalities of Things as
software services [14]. The typical architecture consists of
three layers, the physical plane (sensors and actuators), the
service plane, and the applications. All collected data from
the physical plane is transmitted to the service plane for
processing and storage. Applications are then consuming data
and functionality via Web services or platform-specific SDKs.
Such middleware are typically heavyweight and deployed on
the Cloud or powerful gateways [9]. They are not designed to
be deployable on resource-constrained IoT devices and, hence,
do not support local processing or aggregation. In addition,
device composition support (i.e., the ability to connect and in-
tegrate cross-vendor IoT devices) is fairly limited. On the other
hand, service-based middleware work well with unknown or
dynamic IoT topologies through the use of discovery methods
that are largely based on the traditional service and resource
discovery approaches [9].

Cloud-based IoT middleware is the most popular class and
employs Cloud services for gathering, processing, analyzing,
and serving IoT data [15]. Some prominent examples are
Xively [16], Ptolemy [17], Google Fit [18], and Thingspeak
[19]. While such middleware can provide powerful features
and good performance scalability, they typically limit the
user on the type of IoT devices they can deploy and restrict
the applications to use only cloud-supported RESTful APIs.

Similar to service-based solutions, cloud-based middleware
offer limited composition support and no support for local
processing or aggregation. Even though the Cloud offers good
permission and user control options, it requires users to trust
the Cloud provider to protect the privacy and integrity of their
data [9].

Finally, actor-based IoT middleware (e.g., Calvin [20],
Node-RED [21]) advocate the actor model based on which
IoT devices are exposed as reusable actors and are distributed
in a network. Actor-based middleware do not enforce a par-
ticular communication standard like a RESTful API but rather
advocate the use of a particular programming model. These
middleware are designed to be lightweight and embedded in
both resource-constrained [oT devices and powerful servers.
Hence, the computations can be distributed in the network
and take place in any layer. However, they offer limited to no
support for dynamic service discovery and device composition,
while security and privacy are typically lacking due to the
distributed nature of the model.

Table I summarizes the key features of the three aforemen-
tioned middleware classes and offers a direct comparison with
Cuttlefish. In particular, Cuttlefish is a lightweight middleware
capable of running on both the Cloud and resource-constrained
IoT devices, supporting device composition and local pro-
cessing. Service discovery is also supported by semantically
describing the capabilities of IoT devices and subscribing to
the middleware dynamically. Finally, Cuttlefish offers sev-
eral security features including authentication and encryption,
while applications can bypass the middleware and directly
consume device data streams, alleviating privacy concerns.

III. THE CUTTLEFISH ARCHITECTURE

As illustrated in Figure 1, the Cuttlefish architecture consists
of three main types of components: the Client, the Manager,
and the Devices. A Client is used by an application for
interfacing with the Cuttlefish middleware through a dedicated
Client API. The Manager is the central component through
which Cuttlefish manages all connected devices and processes
requests issued by Clients. Devices are the actual IoT end-
points with access to different sensors and/or actuators, which
can read data and execute commands, respectively. This sec-
tion elaborates on these components, while the corresponding
APIs are presented in Section IV.

Application

[Client]
Device API)

C
C
C

Custom
Device

Application

[Client]

Client API)

Manager

Client Authentication)

MQTT Broker)

Devices Administration)

Adaptor

Commercial
Device

Fig. 1. Cuttlefish System Architecture.

A. Clients

A Client serves as the gateway for an [oT application to the
Cuttlefish middleware. Clients are currently implemented in
Java and interface with the Manager through the Client API,
which can be used by applications to: (i) dynamically retrieve
a list of connected Devices and Things (sensors and actuators)
from the Manager along with their properties; (ii) register
event listeners on available Devices and Things for receiving
sensor data; and (ii) execute supported actions on actuators.
Clients are also responsible for registering and connecting to
the Manager. Responses to requests issued by a Client are
asynchronously provided via callback functions.

B. Manager

The Cuttlefish Manager controls and manages Devices and
Clients that are part of the Cuttlefish network. It comprises
the following three main modules: the MQTT Broker, a
lightweight publish-subscribe mechanism for exchanging mes-
sages and data between all components; the Client Authenti-
cation module, which is responsible for authenticating clients
trying to register to the Manager (through an SQLite database
maintained by the Manager); and the Devices Administration
module, which (i) handles the device registration process when
a new IoT device joins the network, (ii) keeps track of the
availability of devices at runtime, and (iii) continuously mon-
itors the status of the sensors/actuators of connected devices.

A unique aspect of Cuttlefish is that all communication
between Clients, the Manager, and Devices is done through
Message Queuing Telemetry Transport (MQTT) [22]. MQTT
is a lightweight publish-subscribe protocol designed for low-
power devices and unreliable networks. Through the MQTT
protocol, messages are published to topics others subscribe

to. It requires minimum network bandwidth and runs on
devices with limited resources, while ensuring a good level
of reliability and assurance of message delivery. The MQTT
protocol involves a MQTT Broker/Server, MQTT Clients, and
topics generated from clients. Multiple clients may subscribe
to the same topics and may also publish messages to them via
the broker. Its simple design allows any type of networked
device to connect to the broker and share data. Cuttlefish
employs MQTT to provide Clients with fast access to streams
of sensor data generated by Devices, as well as the ability to
send requests and control actions to the Manager.

The choice of MQTT as the main mechanism for communi-
cation and data sharing was mainly guided by the fact that it is
simple, flexible, and lightweight, all of which align perfectly
with Cuttlefish’s objectives. Nevertheless, MQTT was also
chosen due to some of its more interesting features in terms
of supported functionality. Through MQTT, clients are able to
subscribe to topics by either defining the exact topic of interest
or using wildcards. The latter approach allows for subscribing
to a collection of topics that fall under a specified topic
category. For example, a client may subscribe to ‘vitals/+’,
which will result in receiving messages from publishers to
both the ‘vitals/HeartRate’ and ‘vitals/Temperature’ topics.

Another important feature of MQTT lies in its ability to
tune the level of Quality of Service (QoS) desired, thus
trading off some of the latency and bandwidth requirements of
the underlying publish-subscribe mechanism employed. More
precisely, QoS in MQTT is defined at three distinct levels,
which determine how reliably the broker and clients deliver
messages. The QoS 0 level exchanges messages without
acknowledging their receipt. QoS I delivers a message at
least once and uses acknowledgments. Lastly, QoS 2 is the
most reliable level as it delivers a message using a four-
step handshake protocol. By default, Cuttlefish uses QoS 1,
however, this can be configured accordingly by developers
depending on the application’s requirements.

C. Devices

A Device in Cuttlefish abstractly represents an IoT endpoint
with access to a set of sensors and/or actuators. In other
words, we differentiate Devices from Things (i.e., raw sensors
or actuators), which is what existing approaches typically
consider as an endpoint. A Device in Cuttlefish can either be:
(i) a custom standalone device with sensors and/or actuators
physically attached to (or embedded within) it, or (i) a
commercial device that may transparently manage a sub-
net of attached devices (e.g., using platform-specific APIs).
The former comprise devices that are typically programmable
such as Raspberry Pi [23], Arduino [24], and Intel-IoT [25]
devices. The latter are typically devices that target automation
in various contexts, with some examples being the Philips
Hue platform [26], Belkin WeMo Home Automation [27], and
Ecobee [28]. Regardless of its type, each Device in Cuttlefish
is identified by a unique String ID, which is either the MAC
address or UID of the corresponding device.

For Commercial devices, most vendors release specific APIs
that developers must use to interact with their products. To
handle this type of devices, a Cuttlefish Adaptor needs to be
implemented, which is tasked with the objective to translate
commands issued by Cuttlefish’s Device API to the corre-
sponding commands supported by the API of the Commercial
device. Thus, as shown in Figure 1, the Adaptor API sits in
between the Commercial device and the Manager.

IV. CUTTLEFISH COMMUNICATION PROTOCOL

This section describes all Client and Device activities,
focusing on the communication protocol between Cuttlefish
components and IoT applications built on top of them.

A. Registration and Administration Processes

1) Client Registration: A Client must be given all required
parameters and credentials to be able to connect and register
with the Manager. This information includes the Domain/IP
and registration port to connect to, as well as appropriate
authentication credentials, namely a valid username and pass-
word. Upon successful authentication, the Manager responds
back to the Client with a unique ClientID that has been
assigned to it, and the Client initiates the connection process
to the MQTT Broker. The Manager then subscribes to the
‘cuttlefish/client/{ClientID }/request’ topic, through which it
accepts future Client requests. Similarly, the Client subscribes
automatically to ‘cuttlefish/client/{ClientID }/response’ to re-
ceive future responses from the Manager.

2) Device Registration: For registering with Cuttlefish,
Devices simply publish to a corresponding device registration
topic (‘cuttlefish/device/{DeviceID}’) using their ID/MAC,
together with some basic information required by the Manager.
This information includes the Device ID, name, type, a set of
properties, and lists of available sensors and actuators. After
validation and authentication, the Manager responds back with
an acknowledgment (ACK). If the process fails for any reason
(e.g., due to a network failure), it is repeated until the Device
receives an ACK successfully.

Upon successful registration of a Device, all Things (i.e.,
sensors and actuators) attached to it need to register sepa-
rately. The process is identical to Device registration, however,
registration requests are now published to a topic (‘cuttle-
fish/device/{DevicelD}/update’), which is created upon the
successful registration of the Device and is specific to the
Device at hand. Such requests are accompanied by information
regarding each Thing, including its ID, type, and capabilities.
For Devices that support the dynamic addition of sensors/ac-
tuators, the same topic is used to inform the Manager of
the addition. Hence, Cuttlefish supports dynamic addition and
removal of both Devices and sensors/actuators on Devices.

3) Heartbeat Mechanism: The Manager periodically
checks the status and availability of registered Devices through
a standard heartbeat mechanism. This mechanism has Devices
periodically send alive messages to the Manager; similarly,
the Manager responds back with the same message content,
ensuring that Devices are also aware of the status of the
Manager at all times.

Step 1: Register Step 3: Forward

Step 2: Generate

Event Listener Event ID Event Listener
and ID
. Cuttlefish
Manager
\5'99 5: Respond Step 4: Create topic
with Event ID

‘cuttlefish/event/{eventID}’
Publishes to
‘cuttlefish/event/{eventID}

Subscribes to
‘cuttlefish/event/{eventID}’

Fig. 2. The processing flow for making a data request to register an event
listener for reading sensor data from a Device.

B. Client API

The Client API is a developer’s main interface with Cut-
tlefish. Different types of requests are supported through this
API, which are listed in Table II and described next.

1) Find Requests: Find requests are directed to the Manager
and aim at identifying dynamically the current availability and
capabilities of Devices and Things connected to Cuttlefish.
These requests allow for specifying filters based on the De-
vice’s ID, type (e.g., thermostat), status (e.g., unreachable), and
its supported sensors/actuators (e.g., presence of temperature
sensor). The response contains a list with the matched Devices
and Things, along with their key properties and capabilities
declared during the registration process.

2) Data Requests: Data requests can only be directed to
Devices with access to sensors. They are responsible for
managing the entire lifecycle of event listeners (aiming to
read sensor data from such Devices). These requests are
classified into three main types, namely, requests for regis-
tering, updating, and removing event listeners, respectively.
Registration requests are first intercepted by the Manager,
who assigns a unique ID, and then forwards them to the
corresponding Device they refer to (see Figure 2). When
the Device receives a registration request, it creates a new
topic with the MQTT Broker (‘cuttlefish/event/{eventID}")
and starts publishing the requested data. Finally, the Manager
responds to the Client with the corresponding event ID. For
update and removal requests, a similar process is followed.
On update, event listener attributes (explained below) can
be changed. On removal, the event listener on the Device
(and all associated topics published to the MQTT Broker) are
destroyed.

Cuttlefish supports three types of event listeners, namely,
Interrupt-Based, Comparison, and Frequency listeners. The
former applies to sensors that do not emit data continuously,
but rather wait for an event to happen and then react to it in a
particular way. An example would be a motion sensor, which
emits data only when it detects motion. Comparison listeners
generate events depending on the actual values emitted by
a sensor, which are read periodically (e.g., every second).
In other words, a comparison filter (e.g., greater, equal, or
less than) is applied based on a specified threshold value. An
example would be to request temperature data only when the
temperature exceeds 30 degrees Celsius. Finally, Frequency
listeners are used to request sensor readings at a given fre-

TABLE II
REQUESTS SUPPORTED VIA THE CLIENT API

Request Scope Filters / Types Response

Find Devices / Sensors / Actuators 1D, Name, Type, State, Thing A list containing requested Devices/Things
Data Sensor Interrupt-based / Comparison / Frequency The event ID created / updated / deleted
Action Actuators None Success or Failure

Status Sensor/Actuator None Current Sensor/Actuator state

quency (specified in seconds). All data are asynchronously
passed to the application via a callback mechanism.

3) Action Requests: Action requests can only be directed
to Devices with access to actuators. They are responsible for
triggering actions on these Devices. The different actions that
these requests may cause depend on the type of actuator
targeted. For example, in the case of a smart lamp, the
available action requests involve setting the brightness levels
of the lamp to some value and switching their state from ON to
OFF (and vice versa). For both types of actions, a callback is
registered to notify the caller of the action’s success or failure.

4) Status Requests: Status requests are used to poll the
value/state of a sensor or actuator at a specific point in time.
Devices receiving a status request will read, for example, the
state of a sensor/actuator at that specific time instance and
return its value in real-time. The response to such requests
(via corresponding callbacks) comprises a list that contains
pairs in the form < value, attribute >. For example, a status
request on a smart lamp would return the state of the lamp
(ON or OFF) and its current brightness level.

V. EVALUATION

Our preliminary evaluation focuses on Cuttlefish’s resource
utilization as a proxy of its lightweight nature. For the ex-
periments, a web application was built on top of Cuttlefish,
which involves two IoT devices, a custom device with sensors
running on a Raspberry Pi 3, and a commercial device (Philips
Hue [26]). The application and Philips Hue adaptor run on a
laptop with a Quad-core 2.4GHz CPU and 12 GB of RAM.
The Cuttlefish Manager runs on the Raspberry Pi 3 device.

A. Application Use Case

A home automation web application was built using the
Cuttlefish Client API. The Devices used are the following:

Custom Raspberry Pi 3 Device. A low-powered device that
uses System on Chip (with an integrated ARM-compatible
CPU and GPU), which allows for directly attaching sensors
and actuators to it. For the purposes of our experiments, an
ultrasonic distance sensor and a DHT11 temperature/humidity
sensor were used. This Device is programmed directly to
interface with Cuttlefish through its Device APIL.

Philips Hue Device. A home automation platform that sup-
ports dimmable lamps, allowing a user to manipulate their
brightness levels. HUE lamps are connected to a ZigBee
network and are controlled from a bridge device. For this
project, a kit of Philips Hue Bridge and two dimmable lamps

were used. An API and SDK are available for accessing
and interfacing with the Hue platform, which are based
on a RESTful interface provided by the Hue Bridge. An
adaptor/translator software component was built to map the
functionality supported by the Devices API to that of the HUE
SDK (recall Figure 1).

The web application developed includes a dashboard that
lists all available Devices and their corresponding sensors/ac-
tuators at runtime. Selecting a particular Device has the effect
of filtering the sensors and actuators that belong to it. The
application also offers an option for filtering Devices by type.
Furthermore, when a particular sensor/actuator is selected,
information regarding its state appears on the dashboard, along
with all registered events that concern it. As part of our use
case, rules were implemented to showcase how automation
can be accomplished through the Client API. More precisely,
all different types of supported event listeners were created
(Interrupt-based, Comparison, and Frequency event listeners)
through which different events are raised. These events trigger
specific actions such as changing the status of a lamp (from
ON to OFF) or adjusting its brightness level.

B. Experimental Methodology

We study the resource utilization during three distinct peri-
ods of time: (i) registration, during which the two Devices first
connect to the Manager and register themselves along with
the connected sensors and actuators; (ii) idle, during which
there is no exchange of data between the components; and (iii)
operations, during which the application issues data requests
continuously and reads sensor data from both Devices.

Figures 3(A) and (B) show the CPU and memory utilization,
respectively, of the application, the Manager, and the two
Devices during registration, idle time, and data operations. The
application has the highest CPU and memory consumption
as it is running within a Tomcat server and using the Spring
framework, both of which can be resource intensive. The Man-
ager and the two Devices experience very low CPU utilization,
5% — 10% during both registration and data operations. In the
idle stage, the CPU usage is negligible (<0.5%) and accounts
for the heartbeats sent from the Devices to the Manager to
ensure their liveness. Memory usage is low and fairly stable
across the three time periods, ranging between 81MB and
100MB for the Philips Hue and between 20MB and 40MB
for the Manager and the Custom Device. Overall, these results
showcase the low resource requirements of the Cuttlefish
platform, its ability to run on a resource-constrained device, as
well as its support for both Custom and Commercial Devices.

m Application Custom Device

20%
18%
16%
14%
12%
10%

8%
6%
4%
2%
0%

Registration

= Manager Philips Hue

Operations

CPU Utilization

Idle

= Application = Manager Custom Device Philips Hue
700
< 600
k]
¥ 500
N
F 400
=]
2300
o
é 200
100
0 | | |
Registration Idle Operations

Fig. 3. (A) CPU and (B) memory utilization during registration process, idle time, and data operations.

To further investigate the impact of Cuttlefish to the appli-
cation development process, we implemented the application
with and without taking advantage of the Cuttlefish platform.
The number of physical lines of code in the first case was only
1620 compared to 17988 in the latter, showing the significant
benefits Cuttlefish can have in terms of implementation effort.

VI. CONCLUSIONS

Cuttlefish is a middleware that allows developers to combine
multiple heterogeneous IoT devices with ease. It adopts a
simple and efficient architecture that has all communications
and data exchanges happen through a lightweight publish-
subscribe engine. It supports: (i) a unified API for real-time
access to heterogeneous IoT devices with minimal developer
efforts; (ii) dynamic service discovery; (iii) device composition
and local processing; and (iv) user security and privacy for
dealing with sensitive data. We have shown experimentally that
our prototype implementation is lightweight enough to allow
it to be hosted on resource-constrained devices, along with
the IoT applications that use it. By avoiding the use of cloud
resources, the deployment of Cuttlefish-enabled applications
is simpler and more cost effective, while any data collected
remain under the control of the users throughout execution.

REFERENCES

[1] A. Pamboris, P. Andreou, H. Herodotou, and G. Samaras, “MULTI-
WEAR: A Multi-Wearable Platform for Enhancing Mobile Experiences,”
in IEEE Consumer Communications & Networking Conference (CCNC),
2018.

[2] S. E. Alshaal, S. Michael, A. Pamboris, H. Herodotou, G. Samaras, and
P. Andreou, “Enhancing Virtual Reality Systems with Smart Wearable
Devices,” in IEEE Intl. Conf. on Mobile Data Management (MDM),
2016.

[3] A. Pamboris, P. Andreou, I. Polycarpou, and G. Samaras, “FogFS: A
Fog File System For Hyper-Responsive Mobile Applications,” in /[EEE
Consumer Communications & Networking Conference (CCNC), 2019.

[4] A. Pamboris, M. Baguena, A. L. Wolf, P. Manzoni, and P. Pietzuch,
“Demo:: NOMAD: An Edge Cloud Platform for Hyper-Responsive
Mobile Apps,” in ACM Intl. Conf. on Mobile Systems, Applications,
and Services (MobiSys), 2015.

[5] A. Pamboris and P. Pietzuch, “C-RAM: Breaking Mobile Device Mem-
ory Barriers Using the Cloud,” IEEE Transactions on Mobile Computing,
vol. 15, no. 11, pp. 2692-2705, 2015.

[6] A. Pamboris, G. Antoniou, C. Makris, P. Andreou, and G. Samaras,
“AD-APT: Blurring the Boundary Between Mobile Advertising and User
Satisfaction,” in ACM Intl. Conf. on Mobile Software Engineering and
Systems (MOBILESoft), 2016.

[71 A. Pamboris and P. Pietzuch, “EdgeReduce: Eliminating Mobile Net-
work Traffic Using Application-Specific Edge Proxies,” in ACM Intl.
Conf. on Mobile Software Engineering and Systems (MobileSoft), 2015.

[8] R. van der Meulen. “Gartner Says 8.4 Billion Connected Things Will
Be in Use in 2017, Up 31 Percent From 2016”. [Online]. Available:
http://www.gartner.com/newsroom/id/3598917

[91 A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “IoT
Middleware: A Survey on Issues and Enabling Technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1-20, 2016.

[10] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Mid-
dleware for Internet of Things: A Survey,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 70-95, 2015.

[11] M. Eisenhauer, P. Rosengren, and P. Antolin, “Hydra: A Development
Platform for Integrating Wireless Devices and Sensors into Ambient
Intelligence Systems,” in The Internet of Things. Springer, 2010, pp.
367-373.

[12] J.-P. Calbimonte, S. Sarni, J. Eberle, and K. Aberer, “XGSN: An Open-
source Semantic Sensing Middleware for the Web of Things,” in Proc.
of the Intl. Workshop on Semantic Sensor Networks, 2014, pp. 51-66.

[13] D. Massaguer, B. Hore, M. H. Diallo, S. Mehrotra, and N. Venkatasub-
ramanian, “Middleware for Pervasive Spaces: Balancing Privacy and
Utility,” in Intl. Conf. on Distributed Systems Platforms and Open
Distributed Processing. Springer, 2009, pp. 247-267.

[14] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas, “Service Oriented
Middleware for the Internet of Things: A Perspective,” in European
Conf. on a Service-Based Internet. Springer, 2011, pp. 220-229.

[15] P. P. Ray, “A Survey of IoT Cloud Platforms,” Future Computing and
Informatics Journal, vol. 1, no. 1-2, pp. 35-46, 2016.

[16] N. Sinha, K. E. Pujitha, and J. S. R. Alex, “Xively Based Sensing and
Monitoring System for I0T,” in Intl. Conf. on Computer Communication
and Informatics (ICCCI). 1EEE, 2015, pp. 1-6.

[17] H. Kim, E. Kang, E. A. Lee, and D. Broman, “A Toolkit for Construction
of Authorization Service Infrastructure for the Internet of Things,” in
Intl. Conf. on Internet-of-Things Design and Implementation (IoTDI),
April 2017.

[18] Google Fit. [Online]. Available: https://developers.google.com/fit/

[19] IoT Analytics - ThingSpeak Internet of Things. [Online]. Available:
https://thingspeak.com/

[20] P. Persson and O. Angelsmark, “Calvin-Merging Cloud and IoT,’
Procedia Computer Science, vol. 52, pp. 210-217, 2015.

[21] Node-RED: Flow-based Programming for the Internet of Things.
[Online]. Available: https://nodered.org/

[22] MQTT. [Online]. Available: http://mqtt.org/

[23] Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. [Online].
Available: https://www.raspberrypi.org/

[24] Arduino. [Online]. Available: https://www.arduino.cc/

[25] IoT: Intel Software. [Online]. Available: https://software.intel.com/en-
us/iot/home

[26] Wireless and Smart Lighting by Philips: Meet Hue. [Online]. Available:
https://www2.meethue.com/en-us

[27] Wemo - Home Automation. [Online]. Available:
https://www.wemo.com/
[28] ecobee: Smart Home Technology. [Online]. Available:

https://www.ecobee.com/

