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ABSTRACT

Timely and cost-effective analytics over “Big Data” is novkey
ingredient for success in many businesses, scientific agicegr-
ing disciplines, and government endeavors. The Hadoop/arst
stack—which consists of an extensible MapReduce execetion
gine, pluggable distributed storage engines, and a rangeoog-
dural to declarative interfaces—is a popular choice fodzita ana-
lytics. Most practitioners of big data analytics—like camtgtional
scientists, systems researchers, and business analgsisthé ex-
pertise to tune the system to get good performance. Unfatily
Hadoop’s performance out of the box leaves much to be desired
leading to suboptimal use of resources, time, and moneyajjn p
as-you-go clouds). We introduce Starfish, a self-tuningesysor
big data analytics. Starfish builds on Hadoop while adaptinger
needs and system workloads to provide good performancenatito
ically, without any need for users to understand and maatpuhe
many tuning knobs in Hadoop. While Starfish's system architre
is guided by work on self-tuning database systems, we didoos
new analysis practices over big data pose new challengadint
us to different design choices in Starfish.

1. INTRODUCTION

Timely and cost-effective analytics over “Big Data” has egeel
as a key ingredient for success in many businesses, saeantifi
engineering disciplines, and government endeavors [6h $&arch
engines and social networks capture and analyze every cisen a
on their sites to improve site design, spam and fraud detecti
and advertising opportunities. Powerful telescopes iroastmy,
genome sequencers in biology, and particle acceleratqisyisics
are putting massive amounts of data into the hands of ssienti
Key scientific breakthroughs are expected to come from cempu
tational analysis of such data. Many basic and applied seien
disciplines now have computational subareas, e.g., catipoal
biology, computational economics, and computationaljalism.

Cohen et al. recently coined the acronfAD—for Magnetism
Agility, andDepth—to express the features that users expect from
a system for big data analytics [6].

Magnetism: A magnetic system attracts all sources of data ir-
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respective of issues like possible presence of outlierknawmn
schema or lack of structure, and missing values that keepy man
useful data sources out of conventional data warehouses.

Agility: An agile system adapts in sync with rapid data evolution.

Depth: A deep system supports analytics needs that go far be-
yond conventional rollups and drilldowns to complex stated and
machine-learning analysis.

Hadoop is a MAD system that is becoming popular for big data
analytics. An entire ecosystem of tools is being developedral
Hadoop. Figure 1 shows a summary of the Hadoop software stack
in wide use today. Hadoop itself has two primary componeats:
MapReduce execution engine and a distributed filesystemleWh
the Hadoop Distributed FileSystem (HDFS) is used predontipa
as the distributed filesystem in Hadoop, other filesystekesAima-
zon S3 are also supported. Analytics with Hadoop involveslilog
data as files into the distributed filesystem, and then rgnparal-
lel MapReduce computations on the data.

A combination of factors contributes to Hadoop’s MADness.
First, copying files into the distributed filesystem is alltékes
to get data into Hadoop. Second, the MapReduce methodology
is to interpret data (lazily) at processing time, and nogéely)
at loading time. These two factors contribute to Hadoop'g-ma
netism and agility. Third, MapReduce computations in Hadcen
be expressed directly in general-purpose programmingukzges
like Java or Python, domain-specific languages like R, oergted
automatically from SQL-like declarative languages likevé®L
and Pig Latin. This coverage of the language spectrum makes
Hadoop well suited for deep analytics. Finally, an unhezdlds-
pect of Hadoop is its extensibility, i.e., the ease with ihitany of
Hadoop’s core components like the scheduler, storage stgsy
input/output data formats, data partitioner, compresaigarithms,
caching layer, and monitoring can be customized or replaced

Getting desired performance from a MAD system can be a non-
trivial exercise. The practitioners of big data analytige Idata
analysts, computational scientists, and systems ressarakually
lack the expertise to tune system internals. Such usersiwathier
use a system that can tune itself and provide good perforenaurc
tomatically. Unfortunately, the same properties that mdkeoop
MAD pose new challenges in the path to self-tuning:

e Data opacity until processingThe magnetism and agility
that comes with interpreting data only at processing time
poses the difficulty that even the schema may be unknown
until the point when an analysis job has to be run on the data.

e File-based processingnput data for a MapReduce job may
be stored as few large files, millions of small files, or any-
thing in between. Such uncontrolled data layouts are a rdarke
contrast to the carefully-planned layouts in databasesyst
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Figure 1: Starfish in the Hadoop ecosystem

e Heavy use of programming languages: sizable fraction 1.1 Starfish: MADDER and Self-Tuning Hadoop

of MapReduce programs will continue to be written in pro-  Hadoop has the core mechanisms to be MADDER than exist-
gramming languages like Java for performance reasons, orjng analytics systems. However, the use of most of these aech
in languages like Python or R that a user is most comfortable pisms has to be managed manually. Take elasticity as an éxamp
with while prototyping new analysis tasks. Hadoop supports dynamic node addition as well as decononissi
ing of failed or surplus nodes. However, these mechanismwto
magically make Hadoop elastic because of the lack of contonl-
ules to decide (a) when to add new nodes or to drop surplusnode
and (b) when and how to rebalance the data layout in this psoce
Starfish is a MADDER and self-tuning system for analytics on
e : - big data. An important design decision we made is to buildfiSta
awarenessElasticity, andRobustnessA syst_em with all six fea- on the Hadoop stack as shown in Figure 1. (That is not to sdy tha
tures would beMADDERthan current analytics systems. Starfish uses Hadoop as is.) Hadoop, as observed earlierséifas
Data-lifecycle-awarenessA data-lifecycle-aware system goes be-  primitives to help meet the new requirements of big dataydical

Traditional data warehouses are kept nonMAD by its adnamist
tors because it is easier to meet performance requirenretighily
controlled environments; a luxury we cannot afford any niéie
To further complicate matters, three more features in andib
MAD are becoming important in analytics systerbsta-lifecycle-

yond query execution to optimize the movement, storage pand In addition, Hadoop’s adoption by academic, governmerd,ian
cessing of big data during its entire lifecycle. The ingglce em- dustrial organizations is growing at a fast pace.

bedded in many Web sites like LinkedIn and Yahoo!—e.g., meco A number of ongoing projects aim to improve Hadoop's peak
mendation of new friends or news articles of potential iesérse- performance, especially to match the query performancariel
lection and placement of advertisements—is driven by cdatjmn- database systems [1, 7, 10]. Starfish has a different goal pgak

intensive analytics. A number of companies today use Haflmop  performance a manually-tuned system can achieve is notrour p
such analytics [12]. The input data for the analytics comemf mary concern, especially if this performance is for one efitrany

dozens of different sources on user-facing systems likevkéye phases in the data lifecycle. Regular users may rarely séerpe
stores, databases, and logging services (Figure 1). Thehdatto mance close to this peak. Starfish’s goal is to enable Hadsers u
be moved for processing to the analytics system. After @msiog, and applications to get good performance automaticallgudin-

the results are loaded back in near real-time to user-fagisgms. out the data lifecycle in analytics; without any need onrtpait to
Terabytes of data may go through tligcle per day [12]. In such understand and manipulate the many tuning knobs available.
settings, data-lifecycle-awareness is needed to: (i)iedite indis- Section 2 gives an overview of Starfish while Sections 3-5 de-

criminate data copying that causes bloated storage negtigyfaas scribe its components. The primary focus of this paper issingu
20x if multiple departments in the company make their ownycop  experimental results to illustrate the challenges in eachponent
of the data for analysis [17]); and (ii) reduce resource loeads and to motivate Starfish’s solution approach.

and realize performance gains due to reuse of intermedidtec

learned metadata in workflows that are part of the cycle [8]. 2. OVERVIEW OF STARFISH
Elasticity: An elastic system adjusts its resource usage and oper- Theworkloadthat a Hadoop deployment runs can be considered
ational costs to the workload and user requirements. SzEnlike at different levels. At the lowest level, Hadoop runs Mapes

Amazon Elastic MapReduce have created a market for pap@s-y  johs A job can be generated directly from a program written in

go analytics hosted on the cloud. Elastic MapReduce pawssi 5 programming language like Java or Python, or generated &o
and releases Hadoop clusters on demand, sparing usersstie ha query in a higher-level language like HiveQL or Pig Latin J16r

of cluster setup and maintenance. submitted as part of a MapReduce jalorkflow by systems like
Robustness:A robust system continues to provide service, possi- Azkaban, Cascading, Elastic MapReduce, and Oozie. Thaiexec
bly with graceful degradation, in the face of undesired &vdike tion plan generated for a HiveQL or Pig Latin query is usually

hardware failures, software bugs [12], and data corruption workflow. Workflows may be ad-hoc, time-driven (e.g., runrgve
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Figure 2: Example analytics workload to be run on Amazon Elatic MapReduce
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Figure 3: Components in the Starfish architecture

hour), or data-driven. Yahoo! uses data-driven workflowgeoer-
ate a reconfigured preference model and an updated homedepage
any user within seven minutes of a home-page click by the user
Figure 2 is a visual representation of an example workloatiah
data analyst may want to run on demand or periodically usimgA
zon Elastic MapReduce. The input data processed by thideastk

gorized into job-level tuning, workflow-level tuning, anavikload-
level tuning. These components interact to provide Stasfishf-
tuning capabilities.

2.1 Job-level Tuning

The behavior of a MapReduce job in Hadoop is controlled by
the settings of more than 190 configuration parameterseltitfer
does not specify parameter settings during job submistien,de-
fault values—shipped with the system or specified by theesyst
administrator—are used. Good settings for these paramdeer
pend on job, data, and cluster characteristics. While orfiae
tion of the parameters can have significant performance émpa
browsing through the Hadoop, Hive, and Pig mailing listesds
that users often run into performance problems caused kyofac
knowledge of these parameters.

Consider a user who wants to perform a join of data in the files
users.txt and geoinfo.txt, and writes the Pig Latin script:

Users = Load ‘users.txt’ as (usernane: chararray,
age: int, ipaddr: chararray)

Geolnfo = Load ‘geoinfo.txt’ as (ipaddr: chararray,
region: chararray)

Result = Join Users by ipaddr, Geolnfo by ipaddr

resides as files on Amazon S3. The final results produced by theThe schema as well as properties of the data in the files cawiel h

workload are also output to S3. The input data consists af fiilat
are collected by a personalized Web-site like yahoo. com

been unknown so far. The system now has to quickly choose the
join execution technique—given the limited informatioragable

The example workload in Figure 2 consists of workflows that so far, and from among 10+ ways to execute joins in Starfish—as

load the files from S3 as three datasets: Users, Geolnfo, kel C
The workflows process these datasets in order to generathf-six
ferent results I-VI of interest to the analyst. For examptesult

well as the corresponding settings of job configuration patars.
Starfish'sJust-in-Time Optimizeaddresses unique optimization
problems like those above to automatically select efficexatcu-

I in Figure 2 is a count of all users with age less than 20. Hor al tion techniques for MapReduce jobs. “Just-in-time” capsuthe

users with age greater than 25, Result Il counts the numheserg

online nature of decisions forced on the optimizer by Hadoop

per geographic region. For each workflow, one or more MapRe- MADDER features. The optimizer takes the help of Pwfiler
duce jobs are generated in order to run the workflow on Amazon and theSampler The Profiler uses a technique calldghamic in-

Elastic MapReduce or on a local Hadoop cluster. For example,
tice from Figure 2 that a join of the Users and Geolnfo dasiset
needed in order to generate Result Il. This logical join apen
can be processed using a single MapReduce job.

The tuning challenges present at each level of workloadgasc
ing led us to the Starfish architecture shown in Figure 3. &8soa
the functionality of the components in this architecture be cate-

strumentatiorto learn performance models, callgt profiles for
unmodified MapReduce programs written in languages lika Jav
and Python. The Sampler collects statistics efficientlyualbe
input, intermediate, and outpkey-value spacesf a MapReduce
job. A unique feature of the Sampler is that it can sample xiee e
cution of a MapReduce job in order to enable the Profiler teecol
approximate job profiles at a fraction of the full job exeouttost.



2.2  Workflow-level Tuning

Workflow execution brings out some critical and unanticigiat
interactions between the MapReduce task scheduler andnthe u
derlying distributed filesystem. Significant performaneéng are
realized in parallel task scheduling by moving the compoiato
the data. By implication, the data layout across nodes ircline
ter constrains how tasks can be scheduled in a “data-loaafi-f
ion. Distributed filesystems have their own policies on hated
written to them is laid out. HDFS, for example, always writes
first replica of any block on the same node where the writer (in
this case, a map or reduce task) runs. This interaction leetwe
data-local scheduling and the distributed filesystem’'sibigace-
ment policies can lead to ambalancedlata layout across nodes in
the cluster during workflow execution; causing severe petémce
degradation as we will show in Section 4.

Efficient scheduling of a Hadoop workflow is further compli-
cated by concerns like (a) avoiding cascading reexecutimen
node failure or data corruption [11], (b) ensuring powerpam
tional computing, and (c) adapting to imbalance in load @t o
energy across geographic regions and time at the datadewnsbr
[16]. Starfish’sWorkflow-aware Scheduleddresses such concerns
in conjunction with theWhat-if Engineand theData Manager
This scheduler communicates with, but operates outsiddobfas
internal task scheduler.

2.3 Workload-level Tuning

Enterprises struggle with higher-level optimization arrdvp
sioning questions for Hadoop workloads. Given a workloaad-co
sisting of a collection of workflows (like Figure 2), StarfishVork-
load Optimizergenerates an equivalent, but optimized, collection
of workflows that are handed off to the Workflow-aware Schedul
for execution. Three important categories of optimizatipportu-
nities exist at the workload level:

A. Data-flow sharingwhere a single MapReduce job performs
computations for multiple and potentially different logic
nodes belonging to the same or different workflows.

. Materialization where intermediate data in a workflow is
stored for later reuse in the same or different workflows.
Effective use of materialization has to consider the cost of
materialization (both in terms of 1/0 overhead and storage
consumption [8]) and its potential to avoid cascading reexe
cution of tasks under node failure or data corruption [11].

. Reorganizationwhere new data layouts (e.g., with partition-
ing) and storage engines (e.g., key-value stores like HBase

and databases like column-stores [1]) are chosen automat-

ically and transparently to store intermediate data so that
downstream jobs in the same or different workflows can be
executed very efficiently.

While categories A, B, and C are well understood in isolgtagm
plying them in an integrated manner to optimize MapReduadkwo
loads poses new challenges. First, the data output from askgs t
and input to reduce tasks in a job is always materialized idddp
in order to enable robustness to failures. This data—wiidhy is
simply deleted after the job completes—is key-value-baserded
on the key, and partitioned using externally-specifiedifpaming
functions. This unique form of intermediate data is avddathmost
for free, bringing new dimensions to questions on mateaion
and reorganization. Second, choices for A, B, and C potgniia
teract among each other and with scheduling, data layoidigs|
as well as job configuration parameter settings. The opéntias
to be aware of such interactions.

Hadoop provisioning deals with choices like the number afasy
node configuration, and network configuration to meet giverkw
load requirements. Historically, such choices arose infeatly
and were dealt with by system administrators. Today, usés w
provision Hadoop clusters on demand using services like -Ama
zon Elastic MapReduce and Hadoop On Demand are required to
make provisioning decisions on their own. StarfisBlgstisizer
automates such decisions. The intelligence in the Elastisomes
from a search strategy in combination with the What-if Eegimat
uses a mix of simulation and model-based estimation to answe
what-if questions regarding workload performance on aifipdc
cluster configuration. In the longer term, we aim to autorpatei-
sioning decisions at the level of multiple virtual and elabtadoop
clusters hosted on a single shared Hadoop cluster to enalledp
Analytics as a Service

2.4 Lastword: Starfish’s Language for Work-
loads and Data

As described in Section 1.1 and illustrated in Figure 1, f&tar
is built on the Hadoop stack. Starfish interposes itself betw
Hadoop and its clients like Pig, Hive, Oozie, and command-li
interfaces to submit MapReduce jobs. These Hadoop clieitits w
now submit workloads—which can vary from a single MapReduce
job, to a workflow of MapReduce jobs, and to a collection of mul
tiple workflows—expressed ihastword to Starfish. Lastword is
Starfish’s language to accept as well as to reason abouttizsaly
workloads.

Unlike languages like HiveQL, Pig Latin, or Java, Lastwaosd i
not a language that humans will have to interface with diyect
Higher-level languages like HiveQL and Pig Latin were deped
to support a diverse user community—ranging from markegimg
alysts and sales managers to scientists, statisticiadssystems
researchers—depending on their unique analytical neeatipraf-
erences. Starfish provides language translators to autaiat
convert workloads specified in these higher-level langsdgéast-
word. A common language like Lastword allows Starfish to expl
optimization opportunities among the different worklodkat run
on the same Hadoop cluster.

A Starfish client submits a workload as a collection of work-
flows expressed in Lastword. Three types of workflows can pe re
resented in Lastword: (a) physical workflows, which are atid
graphd where each node is a MapReduce job representation; (b)
logical workflows, which are directed graphs where each nede
logical specification such as a select-project-join-aggre (SPJA)
or a user-defined function for performing operations likgifian-
ing, filtering, aggregation, and transformations; and y&yrtd work-
flows, where a node can be of either type.

An important feature of Lastword is its support for expragsi
metadata along with the tasks for execution. Workflows $jgeki
in Lastword can be annotated with metadata at the workfloel lev
or at the node level. Such metadata is either extracted from i
puts provided by users or applications, or learned autaaltiby
Starfish. Examples of metadata include scheduling diresfe.g.,
whether the workflow is ad-hoc, time-driven, or data-drjvetata
properties (e.g., full or partial schema, samples, andgiams),
data layouts (e.g., partitioning, ordering, and collama}j and run-
time monitoring information (e.g., execution profiles of pnand
reduce tasks in a job).

The Lastword language gives Starfish another unique adyanta
Note that Starfish is primarily a system for running anab/tiork-

!Language foiStarfishWorkloads andData.
2Cycles may be needed to support loops or iterative compusati



WordCount TeraSort
Rules of | Based on | Rules of| Based on
Thumb | Job Profile| Thumb | Job Profile
io.sort.spill.percent 0.80 0.80 0.80 0.80
io.sort.record.percent  0.50 0.05 0.15 0.15
io.sort.mb 200 50 200 200
io.sort.factor 10 10 10 100
mapred.reduce.tasks 27 2 27 400
[ Running Time (sec) [ 785 | 407 [ 891 ] 606 |

Table 1. Parameter settings from rules of thumb and recom-
mendations from job profiles for WordCount and TeraSort

loads on big data. Atthe same time, we want Starfish to be eigabl
environments where workloads are run directly on Hadoopauit
going through Starfish. Lastword enables Starfish to be used a
recommendation engine in these environments. The full digba

years to understand, debug, and optimize complex systgdnmEiéd
dynamic nature means that there is zero overhead whenrimsitru
tation is turned off; an appealing property in productiomldg-
ments. The current implementation of the Profiler uses BIfak
a safe and dynamic tracing tool for the Java platform.

When Hadoop runs a MapReduce job, the Starfish Profiler dy-
namically instruments selected Java classes in Hadoomgircaot
ajob profile A profile is a concise representation of the job exe-
cution that captures information both at the task and sklitas
els. The execution of a MapReduce job is broken down into the
Map Phasend theReduce Phasesubsequently, the Map Phase is
divided into theReading Map ProcessingSpilling, and Merging
subphases. The Reduce Phase is divided int8lhufling Sorting
Reduce ProcessingndWriting subphases. Each subphase repre-
sents an important part of the job’s overall execution in ¢taud

Hadoop workload from such an environment can be expressed in  The job profile exposes three views that capture variouscéspe

Lastword—we will provide tools to automate this step—anehth
input to Starfish which is run in a speci@commendation mode
In this mode, Starfish uses its tuning features to recommend g
configurations at the job, workflow, and workload levelstéasl of
running the workload with these configurations as Starfishlgvo
do in its normal usage mode.

3. JUST-IN-TIME JOB OPTIMIZATION

The response surfaces in Figure 4 show the impact of various
job configuration parameter settings on the running timewaf t

MapReduce programs in Hadoop. We use WordCount and TeraSort

which are simple, yet very representative, MapReduce progr
The default experimental setup used in this paper is a siagle
Hadoop cluster running on 16 Amazon EC2 nodes of the c1.mediu

type. Each node runs at most 3 map tasks and 2 reduce tasks con-

currently. WordCount processes 30GB of data generated tisen
RandomTextWriter program in Hadoop. TeraSort process€d50
of data generated using Hadoop’s TeraGen program.

Rules of Thumb for Parameter Tuning: The job configuration
parameters varied in Figure 4 dacesort.mhio.sort.record.percent
and mapred.reduce.tasksAll other parameters are kept constant.
Table 1 shows the settings of various parameters for the ¢h® |
based on popular rules of thumb used today [5, 13]. For exam-
ple, the rules of thumb recommend settim@pred.reduce.tasks
(the number of reduce tasks in the job) to roughly times the
total number of reduce slots in the cluster. The rationate isn-
sure that all reduce tasks run in one wave while leaving sdote s
free for reexecuting failed or slow tasks. A more complexerul
of thumb setso.sort.record.percertp s——=——— based on
the average size of map output records. The rationale heok/és
source-code details of Hadoop.

Figure 4 shows that the rule-of-thumb settings gave podoper
mance. In fact, the rule-of-thumb settings for WordCouniegane
of its worst execution timespn.sort. mbandio.sort.record.percent
were set too high. The interaction between these two pasmet
was very different and more complex for TeraSort as showrign F
ure 4(b). A higher setting fdo.sort. mbleads to better performance
for certain settings of the.sort.record.percerparameter, but hurts
performance for other settings. The complexity of the sua$aand
the failure of rules of thumb highlight the challenges a Usees
if asked to tune the parameters herself. Starfish's joh-kevéng
components—Profiler, Sampler, What-if Engine, and Judtiine
Optimizer—help automate this process.

Profiling Using Dynamic Instrumentation: The Profiler usegy-
namic instrumentatiomo collect run-time monitoring information
from unmodified MapReduce programs running on Hadoop. Dy-
namic instrumentation has become hugely popular over ghédar

of the job’s execution:

1. Timings view:This view gives the breakdown of how wall-
clock time was spent in the various subphases. For exam-
ple, a map task spends time reading input data, running the
user-defined map function, and sorting, spilling, and nm&ygi
map-output data.

2. Data-flow view: This view gives the amount of data pro-
cessed in terms of bytes and number of records during the

various subphases.

. Resource-level viewT his view captures the usage trends of
CPU, memory, 1/0, and network resources during the vari-
ous subphases of the job’s execution. Usage of CPU, 1/O,
and network resources are captured respectively in terms of
the time spent using these resources per byte and per record
processed. Memory usage is captured in terms of the mem-
ory used by tasks as they run in Hadoop.

We will illustrate the benefits of job profiles and the insgbained
from them through a real example. Figure 5 shows the Timings
view from the profiles collected for the two configuration goraie-
ter settings for WordCount shown in Table 1. We will denote th
execution of WordCount using the “Rules of Thumb” settingsrf
Table 1 as Jobl; and the execution of WordCount using the “Based
on Job Profile” settings as Ja@®. Note that the same WordCount
MapReduce program processing the same input dataset ¢siigin
in either case. The WordCount program useSambinerto per-
form reduce-style aggregation on the map task side for egitih s
of the map task’s output. Table 1 shows that I®buns 2x faster
than JobA.

Ouir first observation from Figure 5 is that the map tasks inBob
completed on average much faster compared to the map tasids in
A; yetthe reverse happened to the reduce tasks. Furtheratipto
of the Data-flow and Resource views showed that the Combiner
in Job A was processing an extremely large number of records,
causing high CPU contention. Hence, all the CPU-intensjye o
erations in JobA’'s map tasks (executing the user-provided map
function, serializing and sorting the map output) were tieghy
affected. Compared to JoH, the lower settings foro.sort.mb
andio.sort.record.percenin Job B led to more, but individually
smaller, map-side spills. Because the Combiner is invoketi@se
individually smaller map-side spills in JaB, the Combiner caused
far less CPU contention in JaB compared to Jobl.

On the other hand, the Combiner drastically decreases thargm
of intermediate data that is spilled to disk as well as tramefi over
the network ghuffled from map to reduce tasks. Since the map
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Figure 5: Map and reduce time breakdown for two WordCount
jobs run with different settings of job configuration parameters
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4. The cluster setup and resource allocation that will be tse
run JobJ. This information includes the number of nodes
and network topology of the cluster, the number of map and
reduce task slots per node, and the memory available for each
task execution.

The What-if Engine uses a set pérformance modeffor predict-
ing (a) the flow of data going through each subphase in the job’
execution, and (b) the time spent in each subphase. The M-
gine then produces\artual job profileby combining the predicted
information in accordance with the cluster setup and resoalio-
cation that will be used to run the job. The virtual job profiten-

tasks in JobB processed smaller spills, the data reduction gains tains the predicted Timings and Data-flow views of the job whe

from the Combiner were also smaller; leading to larger arteun

run with the new parameter settings. The purpose of thealirtu

of data being shuffled and processed by the reducers. However Profile is to provide the user with more insights on how thevialb

the additional local 1/0O and network transfer costs in Blwere
dwarfed by the reduction in CPU costs.

Effectively, the more balanced usage of CPU, I/O, and nétwor
resources in the map tasks of JBbimproved the overall perfor-
mance of the map tasks significantly compared to dol®verall,
the benefit gained by the map tasks in B®butweighed by far the
loss incurred by the reduce tasks; leading to the 2x bettdope
mance of JokB compared to the performance of Jdb

Predicting Job Performance in Hadoop: The job profile helps in
understanding the job behavior as well as in diagnosinddmattks
during job execution for the parameter settings used. Mopor-
tantly, given a new setting of the configuration parameters, the
What-if Engine can use the job profile and a set of models tleat w
developed to estimate the new profile if the job were to be gimgu
S. This what-if capability is utilized by the Just-in-Time @npizer
in order to recommend good parameter settings.

The What-if Engine is given four inputs when asked to predict
the performance of a MapReduce jdgb

1. The job profile generated fof by the Profiler. The profile
may be available from a previous execution/ofOtherwise,
the Profiler can work in conjunction with Starfish’s Sampler
to generate an approximate job profile efficiently. Figure 6
considers approximate job profiles later in this section.

. The new setting of the job configuration parameters using
which JobJ will be run.

. The size, layout, and compression information of the tinpu
dataset on which Job will be run. Note that this input

behave when using the new parameter settings, as well as to ex
pand the use of the What-if Engine towards answering hypictie
guestions at the workflow and workload levels.

Towards Cost-Based Optimization:Table 1 shows the parameter
settings for WordCount and TeraSort recommended by araliniti
implementation of the Just-in-Time Optimizer. The WhaEif-
gine used the respective job profiles collected from runttiegobs
using the rules-of-thumb settings. WordCount runs almostet
as fast at the recommended setting. As we saw earlier, wigle t
Combiner reduced the amount of intermediate data drastidal
was making the map execution heavily CPU-bound and slow. The
configuration setting recommended by the optimizer—witheo
io.sort.mbandio.sort.record.percert-made the map tasks signif-
icantly faster. This speedup outweighed the lowered éifecess
of the Combiner that caused more intermediate data to béesthuf
and processed by the reduce tasks.

These experiments illustrate the usefulness of the JtiBirie
Optimizer. One of the main challenges that we are addressing
is in developing an efficient strategy to search through flgé-h
dimensional space of parameter settings. A related chy@lénin
generating job profiles with minimal overhead. Figure 6 shtive
tradeoff between the profiling overhead (in terms of job slown)
and the average relative error in the job profile views whefilpr
ing is limited to a fraction of the tasks in WordCount. Theules
are promising but show room for improvement.

4. WORKFLOW-AWARE SCHEDULING

Cause and Effect of Unbalanced Data LayoutsSection 2.2 men-
tioned how interactions between the task scheduler andaiiegs

dataset can be different from the dataset used while gener-employed by the distributed filesystem can lead to unbathde¢a

ating the job profile.

layouts. Figure 7 shows how even the execution of a singtgelar
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123456789101 12131415 We ran the same partitioning job with a replication factotved
Datanode for the partitions. For our single-rack cluster, HDFS piatiee
second replica of each block of the partitions on a randarhlysen
Figure 7: Unbalanced data layout node. The overall layout is still unbalanced, but the timesaa
job can cause an unbalanced layout in Hadoop. We ran a partiti  the partitions improved significantly because the secomy ai
ing MapReduce job (similar to “Partition by age” shown in &ig the data is spread out over the cluster (Figure 8). Integlgtias

2) that partitions a 100GB TPC-H Lineitem table into fourtpar ~ Shown in Figure 9, the overhead of creating a second reyslieery
tions relevant to downstream workflow nodes. The data ptigger ~ Small on our cluster (which will change if the network becsrtiee

are such that one partition is much larger than the othersthal ~ bottleneck [11]). _ _
partitions are replicated once as done by default for inéetiate Aside from ensuring that the data layout is balanced, otheices
workflow data in systems like Pig [11]. HDFS ends up placirig al are available such as collocating two or more datasets. i@&ms
blocks for the large partition on the node (Datanode 14) witiee workflow consisting of three jobs. The first two jobs partititvo
reduce task generating this partition runs. separate datasef? and S (e.g., Users and Geolnfo from Figure

A number of other causes can lead to unbalanced data layouts2) Using the same partitioning function intopartitions each. The
rapidly or over time: (a) skewed data, (b) scheduling of saisk third job, whose input consists of the. outputs .of the first jolus,
a data-layout-unaware manner as done by the Hadoop schedule Performs an equi-join of the respective partitions fréirand .

available today, and (c) addition or dropping of nodes witrran- HDFS does not provide the ability to collocate the joiningtipa
ning costly data rebalancing operations. (HDFS does nohaat: tions from /2 and.5; so a join job run in Hadoop will have to do
ically move existing data when new nodes are added.) Unbetan ~ non-data-local reads for one of its inputs. o

data layouts are a serious problem in big data analyticsuseca We implemented a new block placement policy in HDFS that
they are prominent causes of task failure (due to insufficiee enables collocation of two or more datasets. (As an exdetien
disk space for intermediate map outputs or reduce inputspan ample of Hadoop’s extensibility, HDFS provides a pluggabter-

formance degradation. We observed a more than 2x slowdown fo face that simplifies the task of implementing new block paeet
a sort job running on the unbalanced layout in Figure 7 coegpar  Policies [9].) Figure 10 shows how the new policy gives a 22%

to a balanced layout. improvement in the running time of a partition-wise join jol
Unbalanced data layouts cause a dilemma for data-localigre ~ collocating the joining partitions. _

schedulers (i.e., schedulers that aim to move computaticthet Experimental results like those above motivate the needfor

data). Exploiting data locality can have two undesirableses Workflow-aware Scheduler that can run jobs in a workflow such

guences in this context: performance degradation due taceet! that the overall performance of the workflow is optimized. rkvo

parallelism, and worse, making the data layout further larizzd flow performance can be measured in terms of running time, re-

because new outputs will go to the over-utilized nodes. feigu source utilization in the Hadoop cluster, and robustnesaiiares
also shows how running a map-only aggregation on the large pa (€-9., minimizing the need for cascading reexecution d¢fsasie to
tition leads to the aggregation output being written to there node failure or data corruption) and transient |ssues,(Eegct|ng_
utilized Datanode 14. The aggregation output was small.rgeta {0 the slowdown of a node due to temporary resource contgntio
output could have made the imbalance much worse. On the otherAS illustrated by Figures 7-10, good layouts of the initiahge),
hand, non-data-local scheduling (i.e., moving data to tmeputa- |r_1termed|ate (temporary), and final (results) data in a forkare
tion) incurs the overhead of data movement. A useful newfeat  Vital to ensure good workflow performance.

in Hadoop will be to piggyback on such data movements to rebal Workflow-aware Scheduling: A Workflow-aware Scheduler can
ance the data layout. ensure that job-level optimization and scheduling poticee co-
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Figure 10: Respective execution times of a partition-wisegjn
job with noncollocated and collocated input partitions

ordinated tightly with the policies for data placement eoypd
by the underlying distributed filesystem. Rather than mglkde-
cisions that are locally optimal for individual MapReduabs,
Starfish’s Workflow-aware Scheduler makes decisions byidens
ing producer-consumer relationships among jobs in the fiamvk
Figure 11 gives an example of producer-consumer relatipash

among three JobB, C'1, andC?2 in a workflow. Analyzing these
relationships gives important information such as:

e What parts of the data output by a job are used by down-
stream jobs in the workflow? Notice from Figure 11 that the
three writer tasks of Jo® generate files-ilel, File2, and
File3 respectively. (In a MapReduce job, the writer tasks are
map tasks in a map-only job, and reduce tasks otherwise.)
Each file is stored as blocks in the distributed filesystem.
(HDFS blocks are 64MB in size by defaulE)lel forms the
input to JobC'1, while Filel andFile2 form the input to Job
C2. SinceFile3is not used by any of the downstream jobs,
a Workflow-aware Scheduler can configure J@ho avoid
generating-ile3.

e What is the unit of data-level parallelism in each job that
reads the data output by a job? Notice from Figure 11 that
the data-parallel reader tasks of J8b read and process one
data block each. However, the data-parallel reader tasks of
JobC2 read one file each. (In a MapReduce job in a work-
flow, the data-parallel map tasks of the job read the output
of upstream jobs in the workflow.) While not shown in Fig-
ure 11, jobs like the join in Figure 10 consist of data-paifall
tasks that each read a group of files output by upstream jobs
in the workflow. Information about the data-parallel access
patterns of jobs is vital to guarantee good data layouts that
in turn, will guarantee an efficient mix of parallel and data-
local computation. FoFile2 in Figure 11, all blocks in the
file should be placed on the same node to ensure data-local
computation (i.e., to avoid having to move data to the compu-
tation). The choice foFilel, which is read by both JokS1

Job P
Tasks

File 1 [File 2| [File 3

Figure 11: Part of an example workflow showing producer-
consumer relationships among jobs

block placement policy which works as follows: the first
replica of any block is stored on the same node where the
block’s writer (a map or reduce task) runs. We have imple-
mented a neiRound Robirblock placement policy in HDFS
where the blocks written are stored on the nodes of the dis-
tributed filesystem in a round robin fashion.

. How many replicas to store—called tteplication factor—

for the blocks of a file? Replication helps improve perfor-

mance for heavily-accessed files. Replication also imgove
robustness by reducing performance variability in case of
node failures.

. What size to use for blocks of a file? For a very big file, a

block size larger than the default of 64MB can improve per-
formance significantly by reducing the number of map tasks
needed to process the file. The caveat is that the choice of the
block size interacts with the choice of job-level configioat
parameters likéo.sort. mb(recall Section 3).

. Should a job’s output files be compressed for storage? Like

the use of Combiners (recall Section 3), the use of compres-
sion enables the cost of local I/O and network transfers to be
traded for additional CPU cost. Compression is not always
beneficial. Furthermore, like the choice of the block sike, t
usefulness of compression depends on the choice of job-leve
parameters.

The Workflow-aware Scheduler performs a cost-based seareh f

andC2, is not so easy to make. The data-level parallelismis good layout for the output data of each job in a given workflow.
at the block-level in Jol6’1, but at the file-level in Jolo'2. The technique we employ here asks a number of questions to the
Thus, the optimal layout dfilel from JobC1's perspective  what-if Engine; and uses the answers to infer the costs amefite
is to spreadilel’s blocks across the nodes so that's map of various choices. The what-if questions asked for a workflo
tasks can run in parallel across the cluster. However, the op consisting of the producer-consumer relationships amobg 2,
timal layout ofFilel from JobC2's perspective is to place (1, andC2 shown in Figure 11 include:
all blocks on the same node.

(a) What is the expected running time of Jébif the Round

Starfish’s Workflow-aware Scheduler works in conjunctiotiwtie Robin block placement policy is used fB¥s output files?

What-if Engine and the Just-in-Time Optimizer in order tolqgihe
job execution schedule as well as the data layouts for a voovkfl
The space of choices for data layout includes:

(b) What will the new data layout in the cluster be if the Round
Robin block placement policy is used fé¥s output files?

1. What block placement policy to use in the distributed jites
tem for the output file of a job? HDFS uses thecal Write

(c) What is the expected running time of Jol (C2) if its input
data layout is the one in the answer to Question (b)?
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(d) What are the expected running times of Jéhisand C2 if
they are scheduled concurrently when Jdbompletes?

(e) Given the Local Write block placement policy and a repli-
cation factor of 1 for JolP’s output, what is the expected
increase in the running time of JaBi1 if one node in the
cluster were to fail during’1’'s execution?
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uses the What-if Engine to do a cost-based estimation ofhehet
the transformation will improve performance.

Consider the workflows that produce the results 1V, V, and VI
in Figure 2. These workflows have a join of Users and Clicks in
common. The results IV, V, and VI can each be represented as a
Select-Project-Aggregate (SPA) expression over the jBtarfish
has an operator, called tidembo operatarthat can process any
number of logical SPA workflow nodes over the same table in a
single MapReduce job. (MRShare [14] and Pig [15] also suppor

These questions are answered by the What-if Engine based on asimilar operators.) Without the Jumbo operator, each SRéeno

simulation of the main aspects of workflow execution. Thépsh-
volves simulating MapReduce job execution, task scheguiind
HDFS block placement policies. The job-level and clustsel
information described in Section 3 is needed as input fosiimal-
lation of workflow execution.

Figure 12 shows results from an experiment where the Workflow
aware Scheduler was asked to pick the data layout for a tvo-jo
workflow consisting of a partition job followed by a sort jobhe
choice for the data layout involved selecting which blockge-
ment policy to use between the (default) Local Write poling ¢he
Round Robin policy. The remaining choices were kept comstan
replication factor is 1, the block size is 128MB, and compi@s is
not used. The choice of collocation was not considered strise
not beneficial to collocate any group of datasets in this.case

The Workflow-aware Scheduler first asks what-if questions re
garding the partition job. The What-if Engine predictedreotly
that the Round Robin policy will perform better than the Loca
Write policy for the output data of the partition job. In oduster
setting on Amazon EC2, the local I/O within a node becomes the
bottleneck before the parallel writes of data blocks to ositerage
nodes over the network. Figure 12(a) shows the actual pedioce
of the partition job for the two block placement policies.

The next set of what-if questions have to do with the perfarcea
of the sort job for different layouts of the output of the fitéoh job.
Here, using the Round Robin policy for the partition job’sput
emerges a clear winner. The reason is that the Round Robaypol
spreads the blocks over the cluster so that maximum daghgay-
allelism of sort processing can be achieved while perfogniata-
local computation. Overall, the Workflow-aware Scheduliek®
the Round Robin block placement policy for the entire workflo
As seen in Figure 12(b), this choice leads to the minimuri tate
ning time of the two-job workflow. Use of the Round Robin pyglic
gives around 30% reduction in total running time comparethéo
default Local Write policy.

5. OPTIMIZATION AND PROVISIONING
FOR HADOOP WORKLOADS

Workload Optimizer: Starfish’'s Workload Optimizer represents
the workload as a directed graph and applies the optimizstisted
in Section 2.3 as graph-to-graph transformations. Theropsr

will have to be processed as a separate job. The Jumbo openato
ables sharing of all or some of the map-side scan and connputat
sorting and shuffling, as well as the reduce-side scan, ctatipn,
and output generation. At the same time, the Jumbo operator ¢
help the scheduler to better utilize the bounded number of ana
reduce task slots in a Hadoop cluster.

Figure 13(a) shows an experimental result where three dbgic
SPA workflow nodes are processed on a 24GB dataset aSe(a)
rial, which runs three separate MapReduce jobs in sequence; (b)
Concurrent which runs three separate MapReduce jobs concur-
rently; (c) using the Jumbo operator to share the map-sidassc
in the SPA nodes; and (d) using the Jumbo operator to share the
map-side scans as well as the intermediate data produceaeby t
SPA nodes. Figure 13(a) shows that sharing the sorting aufd sh
fling of intermediate data, in addition to sharing scansyigies
additional performance benefits.

Now consider the workflows that produce results I, I, IV, and
V in Figure 2. These four workflows have filter conditions on
the age attribute in the Users dataset. Running a MapRedbce |
to partition Users based on ranges of age values will endigle t
four workflows to prune out irrelevant partitions efficigntFigure
13(b) shows the results from applying partition pruningt® $ame
three SPA nodes from Figure 13(a). Generating the parsitias
significant overhead—as seen in Figure 13(b)—but possésilex-
ist to hide or reduce this overhead by combining partitignirith a
previous job like data copying. Partition pruning improtes per-
formance of all MapReduce jobs in our experiment. At the same
time, partition pruning decreases the performance bempetitéded
by the Jumbo operator. These simple experiments illustinatén-
teractions among different optimization opportunitiesttéxist for
Hadoop workloads.

Elastisizer: Users can now leverage pay-as-you-go resources on
the cloud to meet their analytics needs. Amazon Elastic MapR
duce allows users to instantiate a Hadoop cluster on EC2snode
and run workflows. The typical workflow on Elastic MapReduce
accesses data initially from S3, does in-cluster analydicd writes
final output back to S3 (Figure 2). The cluster can be releadeh

the workflow completes, and the user pays for the resouras us
While Elastic MapReduce frees users from setting up and -main
taining Hadoop clusters, the burden of cluster provisignstill
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on the user. Specifically, users have to specify the numtktyge

tempted to use in the What-if Engine. However, Mumak needs a

of EC2 nodes (from among 10+ types) as well as whether to copy workload execution trace for a specific cluster size as inpod

data from S3 into the in-cluster HDFS. The space of provisigpn
choices is further complicated by Amazon Spot Instanceshvhi
provide a market-based option for leasing EC2 nodes. Irtiaddi
the user has to specify the Hadoop-level as well as job-lewe!
figuration parameters for the provisioned cluster.

One of the goals of Starfish’s Elastisizer is to automatjadditer-
mine the best cluster and Hadoop configurations to procesga g
workload subject to user-specified goals (e.g., on congpigtime
and monetary costs incurred). To illustrate this probleiguie 14
shows how the performance of a workloHd consisting of a sin-
gle workflow varies across different cluster configuratiémsmber
and type of EC2 nodes) and corresponding Hadoop configngsatio
(number of concurrent map and reduce slots per node).

The user could have multiple preferences and constraintado
workload, which poses a multi-objective optimization gesh. For
example, the goal may be to minimize the monetary cost ieduo
run the workload, subject to a maximum tolerable workloah-co
pletion time. Figures 15(a) and 15(b) show the running tiswell
as cost incurred on Elastic MapReduce for the workldador dif-
ferent cluster configurations. Some observations from theds:

o If the user wants to minimize costs subject to a completiorti
of 30 minutes, then the Elastisizer should recommend aezlust
of four m1.large EC2 nodes.

e |f the user wants to minimize costs, then two ml.small nodes
are best. However, the Elastisizer can suggest that by gayin
just 20% more, the completion time can be reduced by 2.6x.

To estimate workload performance for various cluster caoméig
tions, the Elastisizer invokes the What-if Engine which,tunn,

uses a mix of simulation and model-based estimation. As dis-

cussed in Section 4, the What-if Engine simulates the tasidd-
ing and block-placement policies over a hypothetical eysind
uses performance models to predict the data flow and perfarena
of the MapReduce jobs in the workload. The latest Hadooasele
includes a Hadoop simulator, callddumak that we initially at-

cannot simulate workload execution for a different clusiee.

6. RELATED WORK AND SUMMARY

Hadoop is now a viable competitor to existing systems for big
data analytics. While Hadoop currently trails existingteyss in
peak query performance, a number of research efforts aressid
ing this issue [1, 7, 10]. Starfish fills a different void by bliag
Hadoop users and applications to get good performance attom
ically throughout the data lifecycle in analytics; withany need
on their part to understand and manipulate the many tuniogpkn
available. A system like Starfish is essential as Hadoopeusag-
tinues to grow beyond companies like Facebook and Yahod! tha
have considerable expertise in Hadoop. New practitiontlEgo
data analytics like computational scientists and systesesarchers
lack the expertise to tune Hadoop to get good performance.

Starfish’s tuning goals and solutions are related to prejkice
Hive, Manimal, MRShare, Nectar, Pig, Quincy, and Scope [248
15, 18]. The novelty in Starfish’'s approach comes from how-it f
cusessimultaneoushon different workload granularities—overall
workload, workflows, and jobs (procedural and declarativa$
well as across various decision points—provisioning,rojgation,
scheduling, and data layout. This approach enables Steofisin-
dle the significant interactions arising among choices nadahf-
ferent levels.
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APPENDIX
A. STARFISH’'S VISUALIZER

When a MapReduce job executes in a Hadoop cluster, a lot of in-
formation is generated including logs, counters, resoutitization
metrics, and profiling data. This information is organizsthred,
and managed by Starfish’s Metadata Manager in a catalogahat ¢
be viewed using Starfish¥¥isualizer A user can employ the Vi-
sualizer to get a deep understanding of a job’s behaviongwex-
ecution, and to ultimately tune the job. Broadly, the functlity
of the Visualizer can be categorized iffimeline viewsData-flow
views andProfile views

(5]

(8]

9]
[10]
[11]
[12]

[13]

[15]

(18]

A.1 Timeline Views

Timeline views are used to visualize the progress of a job exe
cution at the task level. Figure 16 shows the execution timeedf
map and reduce tasks that ran during a MapReduce job executio
The user can observe information like how many tasks were run
ning at any point in time on each node, when each task stantd a

ended, or how many map or reduce waves occurred. The user is

able to quickly spot any variance in the task execution tiared
discover potential load balancing issues.

Moreover, Timeline views can be used to compare different ex
ecutions of the same job run at different times or with défer
parameter settings. Comparison of timelines will show et

the job behavior changed over time as well as help understend
impact that changing parameter settings has on job execulio
addition, the Timeline views support\@hat-if mode using which
the user can visualize what the execution of a job will be when
using different parameter settings. For example, the waedeter-
mine the impact of decreasing the valudabort.mbon map task
execution. Under the hood, the Visualizer invokes the Wh&t-
gine to generate a virtual job profile for the job in the hymitel
setting (recall Section 3).

A.2 Data-flow Views

The Data-flow views enable visualization of the flow of data
among the nodes and racks of a Hadoop cluster, and between the
map and reduce tasks of a job. They form an excellent way of ide
tifying data skew issues and realizing the need for a beteti-p
tioner in a MapReduce job. Figure 17 presents the data flommgmo
the nodes during the execution of a MapReduce job. The thgkn
of each line is proportional to the amount of data that wasfletl
between the corresponding nodes. The user also has thiy &bili
specify a set of filter conditions (see the left side of Figlirg that
allows her to zoom in on a subset of nodes or on the large data
transfers. An important feature of the Visualizer is tfideo mode
that allows users to play back a job execution from the past. U
ing the Video mode (Figure 17), the user can inspect how data w
processed and transfered between the map and reduce tdbks of
job, and among nodes and racks of the cluster, as time went by.

A.3 Profile Views

In Section 3, we saw how a job profile contains a lot of useful
information like the breakdown of task execution timingssaurce
usage, and data flow per subphase. The Profile views heldizisua
the job profiles, namely, the information exposed by the mgsi
Data-flow, and Resource-level views in a profile; allowingian
depth analysis of the task behavior during execution. Famgpte,
Figure 5 shows parts of two Profile views that display the krea
down of time spent on average in each map and reduce taskdor tw
WordCount job executions. Jobwas run using the parameter set-
tings as specified by rules of thumb, whereas Bolvas run using
the settings recommended by the Just-in-time Optimizebl€Ta
in Section 3). The main difference caused by the two settivas
more, but smaller, map-side spills for JBbcompared to Jobl.

We can observe that the map tasks in Jltompleted on av-
erage much faster compared to the map tasks inAlpopet the
reverse happened to the reduce tasks. The Profile views adidov
see exactly which subphases benefit the most from the paamet
settings. It is obvious from Figure 5 that the time spent qrenf
ing the map processing and the spilling in Blwas significantly
lower compared to JoH.

On the other hand, the Combiner drastically decreases thargm
of intermediate data spilled to disk (which can be observeithé
Data-flow views not shown here). Since the map tasks inBob
processed smaller spills, the reduction gains from the Goenb
were also smaller; leading to larger amounts of data beintjlsd
and processed by the reducers. The Profile views show examtly
much more time was spent in J@b for shuffling and sorting the
intermediate data, as well as performing the reduce cortipata
Overall, the benefit gained by the map tasks in Bobutweighed
by far the loss incurred by the reduce tasks, leading to a #erbe
performance than Jah.
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Figure 16: Execution timeline of the map and reduce tasks of MapReduce job
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Figure 17: Visual representation of the data-flow among the lddoop nodes during a MapReduce job execution



