
A Distributed File System with
Storage-Media Awareness

Herodotos Herodotou
Department of Electrical Engineering, Computer Engineering and Informatics

Cyprus University of Technology
Email: herodotos.herodotou@cut.ac.cy

Abstract—Improvements in memory, storage devices, and net-
work technologies are constantly exploited by distributed systems
in order to meet the increasing data storage and I/O demands
of modern large-scale data analytics. Some systems use memory
and SSDs as a cache for local storage while others combine local
with network-attached storage to increase performance. However,
no work has ever looked at all layers together in a distributed
setting. We present a novel design for a distributed file system that
is aware of storage media (e.g., memory, SSDs, HDDs, NAS) with
different capacities and performance characteristics. The storage
media are explicitly exposed to users, allowing them to choose the
distribution and placement of replicas in the cluster based on their
own performance and fault tolerance requirements. Meanwhile,
the system offers a variety of pluggable policies for automating
data management with the dual goal of increased performance
and better cluster utilization. These two features combined inspire
new research opportunities for data-intensive processing systems.

I. INTRODUCTION

Commodity machines on compute clusters have seen sig-
nificant improvements in terms of memory, storage devices,
and network technologies. Memory capacities are constantly
increasing, which is leading to the introduction of new in-
memory data processing systems like Spark [1]. On the storage
front, flash-based SSDs offer low access latency and energy
consumption with larger capacities. However, the high price
per GB of SSDs makes HDDs the predominant storage media
in datacenters today [2]. This heterogeneity of storage media
must be taken into consideration while designing the next
generation of distributed storage and processing systems.

Recent work takes advantage of increased memory sizes
for improving local data access in distributed applications by
using memory caching, storing data directly in memory, or
using re-computation through lineage [1], [2], [3]. SSDs have
also been used recently as the storage layer for distributed
systems, such as key-value stores [4] and MapReduce systems
[5]. Finally, [6], [7] focus on improving data retrieval from
remote enterprise or cloud storage systems to local clusters by
utilizing on-disk caching at compute nodes for persistent data.

Whereas previous work explores using memory and SSDs
as a cache for local storage, and local storage as a cache
for remote storage, no work has ever looked at all layers
together in a distributed setting. We present a novel design for
a multitenant, distributed, multi-tier file system (MTFS) that
utilizes storage media (e.g., memory, SSDs, HDDs, remote
storage) with different capacity and performance character-
istics. Our design focuses on two antagonistic system capa-
bilities: controllability and automatability. On one hand, the

storage media are explicitly exposed to users, allowing them to
choose the distribution and placement of replicas in the cluster
based on performance and fault tolerance requirements. On the
other hand, MTFS offers a variety of pluggable policies for
automating data management with the dual goal of increasing
performance throughput while improving cluster utilization.

The key challenge lies in the creation of the appropriate
abstractions that simplify and automate data management
across storage tiers yet give enough control to applications to
satisfy their requirements. In this way, higher-level processing
systems can take advantage of the unique capabilities of MTFS
to improve their efficiency and effectiveness in analyzing large-
scale data. Finally, in order to support multitenancy, MTFS
offers security measures and quota mechanisms per storage
media to allow for a fair allocation of resources across users.

Our high-level design is inspired by other popular dis-
tributed file systems such as GFS [8] and HDFS [9]. We believe
this work will open new research directions for improving the
functionality of various distributed systems, such as the task
scheduling algorithms of MapReduce, the query processing of
Pig and Hive, the workload scheduling of Oozie, and others.

II. SYSTEM ARCHITECTURE

MTFS enables scalable and efficient data storage on com-
pute clusters by utilizing directly-attached HDDs, SSDs, and
memory, as well as network-attached or cloud storage. It is
designed to store and retrieve files, whose data will be striped
across nodes as blocks and replicated for fault tolerance. MTFS
employs a multi-master/slave architecture shown in Figure 1.

Primary Masters: Each Primary Master manages the direc-
tory namespace—which offers a traditional hierarchical file
organization and operations (e.g., create and delete files and
directories)—and maintains the block locations that map file
blocks to Workers per storage media. Horizontal scalability is
achieved by using multiple Masters to form a federation.

Backup Masters: Each Primary Master can have a Backup
Master that (i) periodically creates and persists a checkpoint
of the metadata for increased fault tolerance, and (ii) maintains
an in-memory up-to-date image of the directory namespace and
is standing by to take over in case the Primary Master fails.

Workers: The Workers are responsible for (i) storing and
managing the file blocks on the storage media, (ii) serving
read and write requests from the Client, and (iii) performing
block creation, deletion, and replication upon instructions from
the Masters. The storage media of the same type (e.g., SSDs)
across Workers are logically grouped into a virtual storage



Fig. 1. Multi-tier file system architecture.

tier (e.g., the “SSD” tier). The file blocks can be stored and
replicated in one or more tier, based on requests from the Client
or pluggable management policies. When remote storage is
attached to MTFS, applications can use any of the Workers for
reading and writing remote file blocks in parallel. Management
policies are used for caching these blocks in one of the higher-
level tiers for improving future accesses to these files.

Client: A user or application interacts with MTFS through
the Client, which exposes APIs for all typical file system
operations. The number of file replicas for each storage
tier is specified using a replication vector V . For example,
V =<“Memory”, “SSD”, “HDD”, “Remote”>=< 1, 0, 2, 0 >
for a file F indicates that F has 1 replica in the “Memory” tier
and 2 in the “HDD” tier. A new API allows users to modify
V and achieve various functionalities, including moving or
copying a file between tiers, modifying the number of replicas
within a tier, and deleting a file from a tier. Each time V
changes, a network-aware and tier-aware placement policy is
invoked for deciding where the addition or deletion of a replica
will take place. Finally, the Client exposes both the locations
and the storage tiers of the replicas, allowing applications to
make a fully informed decision for which replica to read from.

III. DATA OPERATIONS

The awareness of storage media with different performance
characteristics adds a significant level of complexity to the
main file operations of the system and creates the need for
heterogeneous-aware placement and retrieval policies.

Data Placement: An application adds data to MTFS by
creating a new file and writing the data to it one block at
a time using the Client. Upon a block creation, the Client
obtains a list of <Worker, Tier> pairs for hosting the block
replicas from the Master, organizes the pairs in a pipeline, and
sends the data. The list is determined using a pluggable block
placement policy. Our default policy offers a tradeoff between
minimizing the write cost and maximizing data reliability and
read I/O performance. The placement decision is made along
two axes: the network topology and available storage tiers.
The goal of network-aware data placement is to improve fault
tolerance by making replicas across racks, while the goal of
tier-aware data placement is to increase I/O performance.

Data Retrieval: When an application reads a file, the Client
first contacts the Master for the list of <Worker, Tier> pairs
that host the block replicas, and then connects directly to the
Workers for reading the data. The list is ordered based on a
pluggable data retrieval policy. Our default policy takes as

input (i) the average data transfer rates of the storage media
and network devices in the cluster, (ii) the Client’s network
location, and (iii) the replica locations and storage tiers. For
each replica, it calculates the transfer rate to the Client and
sorts the list based on the decreasing calculated transfer rates.

Replication Management: The Master is responsible for
ensuring that each block always has the intended number of
replicas on each storage tier. When the Master detects situa-
tions of under- or over-replication during the periodic block
reports received from the Workers, it utilizes the placement
and retrieval policies for creating or deleting replicas.

IV. ENABLING USE CASES

The fine-grained storage control MTFS provides offers
significant benefits to large-scale analytics frameworks (e.g.,
MapReduce, Hive, Pig, Impala) in terms of manageability and
performance as they can schedule their data processing jobs
in both a location-aware and a storage-media-aware manner.

MapReduce Task Scheduling: In addition to location, a
MapReduce Scheduler can exploit the tiering information of
each block for making better scheduling decisions. Further-
more, the Scheduler can implement a pre-fetching algorithm
and instruct MTFS to start moving (or copying) block replicas
to a higher storage tier before scheduling the tasks.

Workload Scheduling: Analytical workloads are typically ex-
pressed as directed acyclic graphs of jobs [1], [3]. Intermediate
and common data between jobs can be dynamically placed in
higher storage tiers to speed up the overall processing.

Scale-out Analytics for Enterprise Data: The ability to con-
nect remote storage to MTFS has the potential of significantly
simplifying the data management by creating a shared-storage
back-end system [7]. With MTFS, all storage tiers can be used
for caching enterprise data as well as hosting intermediate data.

Interactive Analytics: By allowing explicit memory man-
agement, MTFS allows interactive applications to pin their
working sets in cluster memory. Fault tolerance is provided
by keeping multiple replicas in memory or on a lower tier.

REFERENCES

[1] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma et al., “Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing,” in Proc. of NSDI. USENIX, 2012, pp. 15–28.

[2] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, Memory Speed Storage for Cluster Computing Frameworks,”
in Proc. of SOCC. ACM, 2014, pp. 1–15.

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “PACMan: Coordinated Memory Caching for
Parallel Jobs,” in Proc. of NSDI. USENIX, 2012, pp. 267–280.

[4] B. Debnath, S. Sengupta, and J. Li, “SkimpyStash: RAM Space Skimpy
Key-Value Store on Flash-based Storage,” in Proc. of SIGMOD. ACM,
2011, pp. 25–36.

[5] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy, “A Platform for
Scalable One-pass Analytics Using MapReduce,” in Proc. of SIGMOD.
ACM, 2011, pp. 985–996.

[6] C. Gkantsidis, D. Vytiniotis, O. Hodson, D. Narayanan, F. Dinu, and A. I.
Rowstron, “Rhea: Automatic Filtering for Unstructured Cloud Storage,”
in Proc. of NSDI. USENIX, 2013, pp. 343–355.

[7] M. Mihailescu, G. Soundararajan, and C. Amza, “MixApart: Decoupled
Analytics for Shared Storage Systems,” in Proc. of FAST. USENIX,
2013, pp. 133–146.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43, 2003.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proc. of MSST. IEEE, 2010, pp. 1–10.


