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Abstract

The heavy-tailed nature of Internet flow sizes, web pages and computer files can cause non-preemptive schedulin
policies to have a large average response time. Since there are numerous communication and distributed processir
systems where preempting jobs can be quite expensive, reducing response times under this constraint is a pressir
issue. One proposal for tackling non-preemption is through the use of multiple servers: classify jobs according to
size and assign a server to each class. Unfortunately, in most systems of interest, job sizes are unknown.

An alterative is to queue all jobs together in a central-queue and assign them in a FCFS fashion to the next
available server. But, this has been believed to yield large response times. In this paper, we argue that this is noi
the case, so long as there are enough servers. The question then is: what is the right number of servers, and is th
small enough to be practical?

Despite the large amount of prior work in analyzing the behavior of a central-queue system, no existing models
are accurate for the case of heavy-tailed size distributions. Our main contribution is a simple yet accurate model for
a central-queue with multiple servers. This model accurately predicts the right number of servers, and the average
and variance of the response time of the system. Hence, it can be used to improve the performance of some ree
systems, such as multi-server supercomputing centers and multi-channel communication systems.
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1. Introduction

The question of whether one fast server is better than many slow servers is quite old. In traditional
gqueueing systems, e.g. when arrivals are Poisson and services are exponential, it is easy to see that on
fast server is optimal. More specifically, in &fy M/ K system where the processing speed of each server
is 1/K, the average response time is minimized ko= 1 ([1], pp. 256—260). (Note that in this paper,
the G/ G/K notation implies that each of théservers has speed &, not 1.)

However, it has been recently observed that in humerous real systems, for example, in computer
clusters and web servers, service requirements are far from exponential, they are in fact heavy-tailed
[2-5]. In such systems, when it is not possible to interrupt the service of a job, multiple-server
architectures outperform single-server ones. The reason is that the probability of occurrence of very
long jobs is no longer exponentially small. As a result, it is quite probable for a single server to be
“blocked” by a long job, making all other jobs wait for a long time until this long job has completed
service.

One way to solve this problem is to introduce preemptive schemes that interrupt the long job to service
shorter ones. Actually, it is well known that a system with a single server that services first the job with
the shortest remaining processing time (SRPT) is optimal with respect to the average respof&e time
But preemptive policies come at a cost, and there are cases where it is impractical to interrupt jobs. For
example, in a cluster of servers that run tasks with high computational and memory requirements, it is
very expensive to switch between tasks.

Another way to reduce waiting times is to use many servers. The authpfkinvestigate this idea;
they show that a multi-server system which assigns the next job to the next available server, known as a
central-queue system, does not perform well under a fixed, small number of servers, and suggest to assigr
jobs to different servers according to their size. However, rarely does one know the job size a priori. To
address this problem, the authof&} proposes an interesting scheme that cancels a job if its service time
exceeds some threshold, and services canceled jobs from scratch, in servers dedicated for long jobs. This
scheme performs well in practice, but it is not work conserving.

Because of its simplicity, the multi-server central-queue system is very appealing in practice and it is
widely used in a variety of real systems. Hence, it is worth to carefully investigate its performance under
heavy-tail service requirements. To this end, we first make the observation that a central-queue system
has good performance so long as there are enough servers to avoid concurrent blocking of all of them, that
is, to avoid the situation where all of them are servicing very long jobs. The question now is: how many
servers does one need to achieve good performance and is this number small enough to be practical?

Unfortunately, there are no exact formulas for the average response time of a multi-server central-
gueue system, even for the simplified case where arrivals are Poisson and service times are independent
a system often referred to as &y G/K queue. Further, the plethora of approximations that exist for
M/G/K systems, see, for examplfl], p. 386,[9-27]) and references within, are not accurate for
heavy-tail service requirements. In particular, these approximations rely heavily on the results derived
for exponential service requirements, and usually do not capture the significant reduction to the average
delay caused by the increase of the number of servers under heavy-tailed traffic. We present in detail
this prior body of work, and verify by simulations their inability to accurately predict the behavior of an
M/G/K queue when service requirements have heavy tails.

2 A gueueing system with Poisson arrivals, exponential service times apdvers.
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Our main contribution is a simple yet accurate model for a multi-server central-queue system. The
model assumes that arrivals come as a Poisson process, and it can be generalized to hold for any renew
process. It makes no assumptions for the service requirements, and it is very accurate no matter how
heavy-tailed service requirements are. Interestingly, we find that the first two moments of the jobs’ size
distribution suffice to capture first-order dynamics of the system, as is the caeé¢ df1 systems. Itis
important to note that our primary goal is to come up with an easy to use, closed-form formula for the
expected delay of multi-server systems that can be use in practice. Along this lines we make a number
of choices: (i) we consider heavy-tailed distributions with finite second moments, as is the case in any
real system, following the paradigm of a number of other researd¢figd28,29,5] (ii) we are more
interested in establishing the accuracy of our formulas via simulations, rather than bounding the error
of the approximation using rigorous arguments, and (iii) we do not attempt to maximize accuracy, but
rather to achieve high accuracy while not losing simplicity. Quite surprisingly, despite our last choice,
our model is significantly more accurate than all prior models, including the ones that are quite complex
and very hard to use in practice.

The organization of the paper is as follows: Sectibshows via simulations that the average re-
sponse time of a central-queue system can be very small when many slow servers are used instea
of a few fast ones. Sectiod develops our model and shows its accuracy via simulations. In the next
section, we present a detailed survey of the large body of work that analfjzég K systems, com-
pare our model to prior models, and establish its superiority. Seéticaiculates the optimal num-
ber of servers that minimizes the average response time of the system, and Semtinciudes the
paper.

2. A single queue with many servers

We consider ad//Heavy-tailedK system, i.e., a central-queue system with Poisson arrivals, heavy-
tailed identically distributed job sizes that are independent from each other and the arrivalseamdrs
running at rate 1K each. The total system service rate is one, and the queue operates in a first-come
first-served (FCFS) manner.

In general, a heavy-tailed distribution is one for whiefiX > x) ~ x~7, where O< y < 2. A simple
and popular heavy-tailed distribution is the Pareto distribution with cumulative distribution function
F(x) =1— (m/x)Y,x > m > 0. Since in practice there is always some upper bound on the size of a job,

a large number of researchers, see, for exanip/e,28,29,5] have adopted the use of a bounded Pareto
distribution with a very high upper bound. Following this approach, we denote by bPareto a bounded Pareto
distribution with cumulative distribution functiafi(x) = f:(sj//ﬁ;y,whereM >x>m > 0,M > m,and

0 < y < 2. A heavy-tailed, upper-bounded distribution has a very large but finite second moment, and
when applied as an input, a tiny fraction of the largest jobs comprises a sizeable fraction of the total load.

Fig. 1 plots the average response time forMfbParetak system as a function df. (Notice that
throughout the paper, theaxis of figures plotting the average response time is normalized, i.e. it shows
the average response time divided by the average job size.) The parameters of the service distributiot
equalm = 1, M = 10°, andy = 1.2. Finally, the system loag, equals 0.8.

The figure also shows the performance of two schemes that assign jobs to different servers basec
on their size. In particular, these schemes comte 1 size thresholds, and assign all jobs with size
less than the smaller threshold to the first server, all jobs with size between the first and the second
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Fig. 1. Mean response time as a function of the number of servers.

threshold to the second server, and so on. The first scheme, which is called pre-assigned based on size
(PABS), uses the size thresholds that equalize the load amonk fesvers: The second scheme,

which is called PABS-opt, uses the size thresholds that minimize the average response time of the
system.

There are two points to be observed from the plot. First, the central-queue scheme with the right
number of servers performs very close to the schemes that use the size of jobs to assign them to different
serverst Second, as the number of available servers is increased from one, the average response time is
significantly reduced for all three schemes. The reason is that the tKghethe smaller the probability
that all servers will be blocked servicing a long jélt is therefore interesting to investigate how many
servers a central-queue system requires to perform competitively. For this, we need a simple yet accurate
model for the expected delay of &/ G/ K system.

Remark. We have made two choices with respect to the input: Poisson arrivals and heavy-tailed, upper-
bounded independent and identically distributed sizes. These choices are in accordance to what has
been observed in practice in many recent measurements of computing systems. In web servers, it has
been documented that web-page sizes are heavy-fa8e2b,5]and that web sessions arrive as a Poisson
proces$30]. In Unix systems, process CPU requirements fit a heavy-tail distrib|&j8h In the Internet,

the flow-size distribution is also heavy-tailgt]. Further, it has been measured that network sessions
arrive as a Poisson procg84—-33] and has been argued that network flowsar# they were Poisson

3 In [7] the authors call this scheme SITA-E and compare its performance for a fixed number of servers against the central-queue
scheme.

4 We have produceBig. 1for a wide range of, M, andp values and the results are similar. (For smadigthe central-queue
scheme performs even closer to PABS and PABS-opt.) Due to limitations of space we do not show these plots.

5 However, aX increases further, the average response time deteriorates. This is so because the blocking probability becomes
insignificant, and the dominant effect is then the linear decrease of the speed of the servers, which causes a linear increase in the
service time.
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[34,35] (In particular, the equilibrium distribution of the number of flows in progregs igflows arrive
as a Poisson process.)

3. An approximate model for the dynamics of the system

We now state the main result of this work, which we will prove later. The average responseg tifje,
of anM/Heavy-tailedK system can be approximated by the following expression:

2
1 f 0) fg(;; (1= Fpiai)(K(1 = ps) — 1)), )

whereX is the size of the jobsy = p + ps = LE(X) is the traffic intensity witho, corresponding to
“long" jobs andps corresponding to “short" jolfs) is the average arrival rate, atith,)(.) denotes the
value of the cumulative distribution function of a Poisson distribution with parameter

In the rest of the section, we derive our main result and investigate how good an approximation itis. We
start with the simplest of all the systems with non-negligible tailsMfgimodal/k system. In this system,
job sizes are bimodal with a probability density functigit) = « - 8(x — A) + (1 — @) - 8(x — B), where
3(x) = 1forx = 0 and 0 otherwise. The size distribution is heavy-tailed when E(X) > A anda ~ 1,
where E(X) denotes the average job size. Later, we will extend the results to job sizes that are Pareto
distributed and to job sizes that follow empirical distributions taken from real traces.

We say that the system igocked when all servers are serving long jobs of skeThe system can
be in two states, blocked and non-blocked. When the system is not blocked there is almost no queueing
and the response time or time in the syst&inis dominated by the service tim&, while the waiting
(queueing) time, is insignificant. Since the service time of a job equals its size divided by the server
rate, I/ K, the average time spent in a non-blocked system equals

E(T) ~ E(X)K +

E(T|non-blocked)= E(S|non-blockedi+ E(W|non-blockedr E(X)K.

When the system is blocked, queueing can no longer be neglected, since many small jobs accumulat:
while the servers are occupied with long jobs. The average service time is again e@i{al)#o. To
compute the average queueing delay we do the following approximation: We will assume that the queueing
delay of a blocked system wittiservers is not much different from that of a system with only one server
and the same input. This is because both systems are processing work at the same rate, and when tt
system is blocked, no server is idle. Note that a number of prior works[lh.2,26] have made a
similar approximation, in particular, they have assumed that when all servers are busy, the system car
be regarded as aWf/ G /1 queue. (We regard the system asMinG /1 queue when all servers are busy
servicinglong jobs.) Returning back to the derivation of the expected delay, by the Pollaczek-Khintchine
formula[l1, pp. 256-260]we get:

E(T|blocked)= E(S|blocked)+ E(W|blocked)~ E(X)K + E(W|K = 1)
p E(X?)

= E(X)K + fp : 2E(X)’

& Which jobs are called long and which short, is going to become precise later.
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wherep = AE(X) is the total system load aridis the average arrival rate. Hence, the average time in
the system is given by:
E(T) = E(T|non-blocked) (1 — P(blocked))+ E(T|blocked)- P(blocked)
p E(X?
~ EX)K + ——
KK+ 1 2k
The only unknown in this expression is the blocking probability.

P(blocked) (2)

3.1. Blocking probability

Let ps = g‘(—g‘()p be the load caused by short jobs, ane= (115_(0)?)3,0 be the load caused by long jobs. In
order to find the blocking probability, we first assume thas very small. Then, we relax this assumption
and study what happens when short jobs carry a non-negligible amount of work.

Blocking occurs if there are at leaStarrivals of long jobs to the servers in the p&¥ time interval.

We assume the probability of this event is close to the probability of haiaugivals of long jobs to the
system in a period equal K. The reason is that if there is no blocking yet, the queue size is small, and
any job that arrives to the system hits a server very fast. Forrfaligcking} 2 {at leastk long arrivals

to the servers in tim@&K } O {at leastk long arrivals to the system in timeK }.

When short jobs carry a sizeable amount of work, they cannot be neglected as above. A simple, yet
accurate way to take short jobs into account is to treat them as “background traffic’. Then, because the
considered time intervaBK, is a lot larger than the service time of short jobs, the work done servicing
short jobs during this time interval is close to its long-term vadye BK. The result is as iKps of the
servers were busy serving short jobs. Hence, the arrivAl(&f— ps) long jobs during a time interval of
BK is enough to block the system, and the blocking probability equals:

P(blocked)~ P(at leastk (1 — ps) long arrivals in timeBK)
K(1-ps)—1
=1— > P(ilongarrivals inBK) = 1 — Fp(.a—asx)(K(1— ps) — 1)
i=0
=1— Fpipr)(K(1—ps) — 1), 3

since the arrival process is Poisson of rajeand thus long jobs are also Poisson with rate-(@)A.
Fpo.r)(N) denotesthe value of the cumulative distribution function of a Poisson distribution with parameter
AT, or equivalently, the probability of having at madétrrivals during a time interval when the arrival
rate equals..

Combining Egs(2) and (3)we obtain Eq(1) which is our main result.

Fig. 2 shows the average response time fonBimodal/K system with loagp = 0.50, where long
jobs comprise 20% of the total workload and they represent between 0.0005% and 0.5% of all jobs. The
average job size equals 1500. It is evident from the plot that the model predicts the average time in the
system quite accurately. Similar are the results for different loads. (Note that@®ases, the difference
betweem andB must also increase to keep the percentile of work carried by long jobs equal to 20%.)

Remark. Fp(;)(N) is a sum between 0 ard, but the upper limit that we are using for the sum in Eq.
(1) is K(1 — ps) — 1, which is non-integer. If we taki to be integer, every /L1 — ps) units we have an
additional term in the sum. The result is that EL). has a saw-tooth pattern that dieskaBicreases, as
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Fig. 2. Response time as obtained from simulations and the model when job sizes are distributed according to a bimodal
distribution (o = 0.50).

shown in the dotted line ikig. 2 If we makeK take values in increments &K = 1/(1 — ps) starting
at 1, then the saw-tooth pattern is no longer present, as shown in the dash—dot line. We will use this
smoothed function in all the other figures.

3.2. A more realistic size distribution

As mentioned earlier, the size distribution of flows in the Internet, web pages, and process CPU
requirements fits a bounded Pareto quite accur§2ely5]. With this in mind, in this section, we extend
our model to approximat®/bParetak systems. Our goal is to compute the paramete, anda of
an equivalent bimodal distribution that corresponds to the bounded Pareto distribution. One can then
calculateos = %p andp, = p — ps, and use Eq1) to estimate the average response time as a function
of the number of servers.
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Fig. 3. Response time for various size threshdlgs

We choose tofit the first two moments of the two distributions for the following reasons. First, when there
are many serverg(T) = E(S) + E(W) = E(S) = E(X)K, which implies that fitting the first moment
suffices to have the same performance for l&g8econd, when there is only one serté?) = E(X) +
ﬁ . %‘Xz; which implies that fitting the second moment as well suffices to have the same performance
for K = 1. Last, we wish to avoid using larger moments because this would increase the complexity of
the procedure; larger moments are not present ifBa@nd are extremely large in case of heavy-tailed
(upper-bounded) distributions.

To fit the first two moments of the two distributions we require:
E(X)=a-A+(1—«)-B,and 4)
EX)=a-A’+(1—a)- B (5)

Using the system of Eq$4) and (5)we can express andB as a function of£(X), E(X?), and« to get
A= E(X)— \/(E(XZ) — E(X)?) - 1;—“ andB = E(X) + \/(E(XZ) — E(X)?) - 1~

All that remains is to find a suitable value f@rwhich is the fraction of short jobs in the corresponding
bimodal distribution. Intuitivelyx corresponds to the jobs that are not very large, which comprise the
vast majority of all jobs. In other words, if one uses a size threshiptd separate short and long jobs,
o= fnfs f(x)dx, wheref(x) is the probability density function of the size distribution. By experimenting
with the simulations, we found the model to be relatively insensitive to the exact valudloils is shown
in Fig. 3where the average response time in&bParetak system forp = 0.7 is plotted as a function
of the number of servers for various size thresholds. As a rule of thumb, the model works quite well when
the size threshold dictating short and long jobs is around one order of magnitude less than the maximum
job size.

Fig. 4shows the average time in afibParetaK system for different system loagswhenm = 3826,
M =10°, andy = 1.1. The size threshold used equalt/10, that is,« is the percentile of jobs
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Fig. 4. Response time for different system loads as obtained from simulations and the model. Job sizes are distributed according
to a bounded Pareto distribution.

whose size is between and M/10. Again, the model predicts the average time in the system quite
accurately.

Remark. It is easy to see that fitting the third moment too gives one more equadt{ofit) = o - A% +

(1 —«) - B3, that can be used to computelf we use this equation together wih) and (5)to map the
distribution ofFig. 4to a bimodal distribution, the resultingequals 0.999994. This is very close to the
value obtained from the size-threshold approach, which equals 0.999987. (Recall that thevkdter

was obtained by usin@; = M/10, and note that the former value corresponds to a size threshold
roughly equal taM/5.) Hence, due to the extra complexity associated with using the third moment, we
do not recommend its use. The size-threshold approach is able to identify the jobs that may cause serve
blocking, and its accuracy is good enough.
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Fig. 5. Response time for different system loads as obtained from simulations and the model. Job sizes are dictated by a real
traffic trace from the Internet.

3.3. Testing the model under real traces

In this subsection, we use job-size distributions obtained from flow-traces of real backbone links in
the Internef36] to test how good our model is in predicting the average time in the system under real
traffic. We calculate from the trace the first two moments of the corresponding size distribution, compute
the parameterd, B, anda of the model, and compare the average response time as obtained from the
model and by running simulations using the flow-size distribution obtained from the trace. Arrivals are
again Poisson. Note that in the simulation, the flow-size distribution does not fit exactly a bounded Pareto.
Despite thisFig. 5shows that the model manages to predict the average response quite accurately for a
variety of system loads.

3.4. Predicting the variance

So far, we have only studied the average response #it¥#),. Now, we work with its variance. First,
notice that for heavy-tailed traffic the variance is very close to the second moment. Second, it is a well-
known that the second moment of the queueing time iMai /1 system equal87]:

pEXY) _ p EXY
1—p 3E(X) 1-p BEX)

E(W?) = 2E(W)? +

Using the same arguments as those used to deriviEgve get:

E(X3)
E(T?) ~ E(X?)K?+ L.
(T°) =~ E(X?) +1_p 3E(X)
where the blocking probability is calculated as before.

Fig. 6 shows the standard deviation, i.e. the square root of the variance, of the response time in an

M/bParetak system for different system loagswhenm = 3826, M = 10%, andy = 1.1. (They-axis

- P(blocking), (6)
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Fig. 6. Standard deviation of the response time for different system loads-&kie is normalized.

is normalized, that is, it plots the standard deviation of the response time over the standard deviation of
the job size.) It is evident that the model can also predict the second moment of the response time. It is
worth noting that the values & that minimize the average and the standard deviation of the response
time are not necessary the same, but they are not very far apart.

4. Comparison to existing models

In this section, we compare the best approximations that exist in the literature, in terms of both accuracy
and simplicity, with the one introduced in this paper. Before proceeding, recall that in our discussion the
speed of each server igK such that the total server capacity remains unchangdétvasies. Most of
the results in the literature assume the speed of each server is always 1, but it is easy to change thes
results to account for different server speeds. We start by introducing the approximations.

The most popular approximation, which has been derived several times in the literature by various
arguments, is the one obtained by Stoj22], Hokstad20], Nozaki and RosR3], Tijms et al.[26], and
others, and is given by the following equation:

(1+C2)

E(T) = E(X) + E(Wumyk) >

(7
Recall thatE(Wa,u/ k) Is the waiting time in the exponential service requirement case, for which exact
closed-form formulas can be easily derijédpp. 256—26QJandCy = % is the coefficient of variation
of the service requirement.

Before presenting the rest of the approximations lets first denot&bthe cumulative distribution
function (cdf) of the service requirement, By the stationary-excess cdf associated wd@th i.e Gs(t) =
ﬁ Jo(X — Gx(u))du,t > 0, and leti(K) = [5°(1 — Gs(t))Xdt, whereK > 1 equals the number of
servers.
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Tijms et al.[26] attempt to improve E.7) by the following expression:

(1+C? )) @)

E(T) = E(X) + (E(WM/M/K) >

wheres = 1+ (1 — p) (2;5}((;;) I6(K) — l) . Observe that Eq$7) and (8)iffer only by the multiplicative
factors.
Another attempt to improve E@7) is the following, proposed by Wang and Wd]ff6]:
(1+C3%)
2

whereA = ’PC : (IG(K) fﬁ%) ‘ and P, is the fraction of arrivals at a’//M/K queue that find
customers in the system and can be calculated recursivelyl(sep. 256—26).

Egs.(7)—(9) are all M/M/K-based expressions, and it is easy to verify that they are exact for the
M/M/K case. In contrast, the following two equations interpolate betu#& &, 1, x) and E(W,p,x)-
They have been proposed by Cosmet$26$ and Boxma et al[24]’, and are as follows:

E(T) = E(X) + E(Wammyx) — A, ()]

E(T) = E(X) + CRE(Waymyx) + (L — CYE(Wnyp/x), and (10)
1+C2 1— Js(K)
E(T E(X , 11
()= EX) + —57-%) E(Watyne) (11)
E(Wwymyk)
whereJs(K) equals 1 fork = 1, and it equal‘k& (% — 1) for K > 1.

The above approximations are based on the following observation. When the variance of the service
requirement? is close toE(X)?, E(W) foranM/G/K system is similar to the wait time in avf/ M/ K
system. When the variance is close to ze&r() is similar to the wait time in a//D/K system. And
for intermediate variance valueB(W) lies between the corresponding wait time in®pD/K and an
M/M/K system[19].

Takahash(38] uses the result for th#f/D/K system as a baseline, and accounts for the particular
service requirement distributiot;x, as follows:

u(e)
E(X)~

1/(e—1)
E(T) = E(X) + ( ) E(Wu/p/x), (12)

. 1/(e—1)
wherew is such thatt (W u, ) = (%) E(Wyyp/k), andu(a) = [3° 1°dGx(1).

Whitt [13] considers & I/ G /K system and suggests the following:
C2+C?
E(T) = E(X) + (azx> PE(Wwnymyk), (13)

where C, is the coefficient of variation of the interarrival times (for Poisson arrivals= 1), @ =

2+2C2 (1 — dy)e20-0/% 4 5 +c?2) (for €2 < ¢?, & +CX > 1, andy is the minimum of 0.24 and (& p)

(K — 1)¥428=2 Note that both Eqg12) and (13)are exact for the// M/K case.

7 We present the slightly modified version suggested by Kinfildh which accounts for the case whete= 1.
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Fig. 7. Accuracy of our Bimodal model versus existing approximations. The service requirement is Bijedal50, « =
percentile of short jobs).

We finally present the simplified version of the diffusion approximation proposed by1¥jowhich
is a refinement of the diffusion approximation proposed earlier by KirfiLoh

E(X)/(1—-p)

B(T) = B0 + o =0

(14)

-1 .
where g = (z{;gl 0; + 0k /(1 — p) + (Kp/ry) (€22 — e /2 — rl)) , 0; = (Kp)'/i!, r; = (2b;/a;),
bi=x—ip,a;=h+inC%i=1,..., K, and as usual is the arrival rate angg~! = E(X).

Figs. 7 and &ompare our Bimodal model versus E¢8)—(14)for various heavy-tailed scenarios.
Simulation results are also plotted for refereri€ig. 7 corresponds to the scenariofiig. 2 where the
service requirement is bimodal,= 0.5, andx is the percentile of small job&ig. 8 corresponds to the
scenario irFig. 4where the service requirement is bounded Pareto with shape parameter equal to 1.1.
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Fig. 8. Accuracy of our Bimodal model versus existing approximations. The service requirement is bounded Pareto.
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In general, as it is evident from both figures, all previous approximations are quite inaccurate. These
approximations rely on the assumption thatMpG/K system behaves similarly to a multiple-server
system with exponential or deterministic service requirements. While this is the case when the service
requirements have small variances, it is far from accurate when the service-time distribution is heavy-
tailed. Note that all prior studies present numerical results for relatively small vald&s of particular
for C% < 9, whereas when service times are heavy-tailéds- 1.

Egs.(8) and (9)perform a bit better tha7), especially inFig. 7. This is expected since they are
improvements ovef7) and take into consideration the particular service distribution. Notice thdBEq.
is not as good ag8) under high utilization, since it was derived under light traffic assumptions. Further,
Eq. (10) performs similarly tq7), (8) and (9)

Two approximations among prior work that give relatively good results in some cases af@ Bgs.
and (12) In particular, Eq(11) performs better ifrig. 7 than the rest of the approximations except ours,
but is bad inFig. 8 and Eq.(12) performs well inFig. 8 but is quite inaccurate ifig. 7. Notice that
both of these approximations incorporate into their model the particular service distribution and they are
somehow hard to use in practice because of their complexity.

Eq.(13)is not very accurate either. This is not surprising since the main goal in deriving this expression
is to handle non-Poisson arrivals, rather than to improve over existing approximations for the Poisson
case. Finally, Eq(14) performs similarly to(7). This is somehow expected since the derivation of the
corresponding diffusion model uses some approximations suggested while dériving

Notice that we have also compared our model to the approximations suggested by Ki@jura
Miyazawa[12] (cases 1 and 2, we left behind case 3 because it is very complicated to use), and Burman
and Smith[27]. These approximations do not perform better than Efs(14)and we do not show the
corresponding lines in the figures to keep them readable.

While prior approximations are inaccurate, our model is quite accurate. Considering its simplicity this
is quite surprising. The key point of our approach is the observation that the system’s behavior drastically
depends on whether all the servers are servicing long jobs and hence they are “blocked”. Depending on
the intensity of long jobs and the number of servers, a system can be “blocked" for a different proportion
of time, and the expected delay is affected accordingly. The parsimonious approach that we follow to
compute the probability that the system is blocked yields accurate results while being easy to use in
practice. Further, the simple approach that we use to map a heavy-tailed distribution into a bimodal
distribution works quite well in practice. We believe this is due to the fact that only very long jobs cause
server blockage, and the size threshold that we use in the mapping is enough to identify those jobs.

As a final note, given the vast differences between the accuracy of our and prior approximations, it is
interesting to inspect the corresponding equations and identify where they differ. With the exception of
Eqgs.(11) and (12)the rest of the approximations appear to be clumped together in the plots, so we will
compare our model to only one of them, and in particular to(Epwhich is the most popular.

It is well known thatE(Wy k) = P(busy)E(X)/(1 — p), where P(busy) is the probability that all
servers are busy in alf/M/K queue, and can be easily computed by the stationary distribution of the
gueudl], pp. 256—260Now, it is easy to see that Eq4.) and (7)would be the same i P(blocked)=
P(busy).Fig. 9plots p P(blocked) andP(busy) as a function of the number of servers for various values
of pi/p, whenp = 0.50 as inFig. 7. It is evident from the plot that as the proportion of the load due to
long jobs approaches one, the two terms become the same. This is an interesting result which implies that
previous approximations yield similar results with our approximation only wigmis close to one. (In
this case prior approximations are as accurate as our model and quite close to simulation results.) When
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Fig. 9. Comparison op P(blocked)= pPb and P(busy)= Pe (p = 0.50).

o1/ p is smaller than one, which is the case in the vast majority of real traces, see, for exan3tlk,
previous approximations differ significantly from our model, and they are a lot less accurate as depicted
in Figs. 7 and 8(In Fig. 7 p;/p = 0.2 and inFig. 8it is between QL and 03 depending on the size
threshold used to identify long jobs.) This observation reinforces our belief that what makes our approach
more accurate than prior work is the idea of “blocking” and the proper computation of the associated
probability P(blocked).

5. On the optimal number of servers

Recall that according to the model, the average time in the system is given 64)EQne can now
differentiate this expression to find the optinial

dE(T) _ AE(X?) dFp

a0 a0 1s)

wheredfe — d S~ KG=r)=1 (@K)1e "% This derivative can be calculated using the Leibniz integral rule

[w]MmhmwsM’(l P9 Frip(K(L— p — 1)+ SEGM 0 00) - (/K — ), where
frpy(K) denotes the value of the probability mass function of a Poisson distribution with parameter
A at K. By ignoring the second term on the derivative (this term takes care of the dependence of the
summation limit onk), we get‘% ~ (11— ps) - frink)(K(1 — ps) — 1). Hence, to compute the optimal

K we need to numerically solve the equation:

(1 py PNt AE(X)?(— p)
P KA=p) -1~ pE(X?)

This approximation does not work well wheris close to one. As a result, fpr> 0.9, one should use
all the terms from the Leibniz integral rule to compute the optimal number of servers with good accuracy.

(16)
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Table 1

Optimum number of servers for various system loads and size distributions

o m M y Ky K} K° K2 0 m M y Ky K} K° K3
05 383 16 11 10 9 9 10 08 383 f0o 11 45 45 46 59
05 549 16 1.2 7 8 7 8 08 549 10 1.2 34 32 32 38
05 713 16 13 6 7 6 6 08 713 o 13 22 21 22 25
07 383 16 11 22 24 22 28 09 383 §0 11 150 146 150 217
07 549 16 12 18 17 17 19 09 549 %0 1.2 93 93 93 128
07 713 16 13 12 13 13 13 0.9 713 80 1.3 61 58 61 77

Let K be the optimalk obtained from simulating ait/bParetak” system, andky be the optimal
K obtained from simulating the correspondisgBimodal/K system described in Secti@i2 Also, let
K° be the optimalk obtained from Equatioifl5), and K be the optimalk obtained from using the
approximation of Eq(16).

Table 1compares these values for various system loads and size distributions. As expected from the
previous plotsK is very close taKy. Further, for small and medium Eq.(16) gives an accurate value
for the optimal number of servers, while asipproaches on& is not anymore a good approximation
of the optimal number of servers. Even when our methods do not yield the exact optimum number of
servers, the error that we incur with respect to the minimum response time is rather small. Typically, the
error for K} is less than 3%, and it is less than 7% in the worst case. The approxinkditypically
yields an error of less than 7%. However, as we mentioned before, the error is larger for high loads as
shown in the table.

Note that in order to compute the optimal number of servers, the only information that is needed from
the traffic is the first two moments of the job-size distribution, the fraction of long jobs and the system
load.

6. Conclusions

Under heavy-tailed traffic, a single fast server that operates in a FCFS manner yields very large average
delays. Preemptive schemes and schemes partitioning jobs into servers based on job sizes can significantl
reduce average delay. However, these schemes are often not available due to implementation constraints

A multi-server central-queue policy that assigns the next job in FCFS order to the first available server,
does not suffer from implementation constraints and has good performance if it consists of enough
servers. Using simulations and analysis, we show that the required number of servers is small enough to
be practical. We also provide a simple way to compute this number.

Our main contribution is the derivation of an accurate and simple to use model #6f@jK system.

In contrast to prior work, our model can accurately predict the average response time of such a system
wheng, the jobs’ size distribution, is heavy-tailed. The key point of our approach is the observation that
the system'’s behavior drastically depends on whether all the servers are servicing long jobs and hence
they are “blocked”, and the accurate computation of the probability that the system is on this state.

In the derivation of the model we do a number of approximations. For example, we model the system
as a single-server one when all servers are busy servicing long jobs, and we use a size threshold to mag
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heavy-tailed distributions in corresponding bimodal distributions. These approximations make the model
very simple and easy to use. Yet, our model is significantly more accurate than all previous approaches.
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